
机器学习
文章平均质量分 95
记录通过python实现机器学习的一些过程,以及一些学习笔记。
左手の明天
用知识改变命运
Python领域优质创作者,CSDN博客专家,蓝桥课程签约作家,简书、掘金、知乎优秀创作者。主要趋向于python,matlab及其相关算法的研究,熟悉图像处理及分析,机器视觉,数据安全,数据可视化。参加了全国大学生机器人大赛Robocon赛事并获得国家一等奖,全国大学生数学建模挑战赛国家三等奖。
这么多程序猿,你是最独特的一个!!!
努力成为python工程师(≧∇≦)
wx公众号:做一个柔情的程序猿
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【重新定义matlab强大系列十八】Matlab深度学习长短期记忆 (LSTM) 网络生成文本
此示例说明如何训练深度学习长短期记忆 (LSTM) 网络以生成文本。要训练深度学习网络以生成文本,先训练“序列到序列”的 LSTM 网络,以预测字符序列中的下一个字符。要训练网络以预测下一个字符,请将移位一个时间步的输入序列指定为响应。原创 2024-03-17 18:31:30 · 1338 阅读 · 0 评论 -
【重新定义matlab强大系列十七】Matlab深入浅出长短期记忆神经网络LSTM
本文主要说明如何使用长短期记忆 (LSTM) 神经网络处理分类和回归任务的序列和时间序列数据。原创 2024-03-09 19:12:50 · 1721 阅读 · 10 评论 -
【Matlab深度学习】详解matlab深度学习进行时间序列预测
LSTM 网络是一种循环神经网络 (RNN),它通过遍历时间步并更新 RNN 状态来处理输入数据。RNN 状态包含在所有先前时间步中记住的信息。可以使用 LSTM 神经网络,通过将先前的时间步作为输入来预测时间序列或序列的后续值。要为时间序列预测训练 LSTM 神经网络,训练具有序列输出的回归 LSTM 神经网络,其中响应(目标)是将值移位了一个时间步的训练序列。也就是说,在输入序列的每个时间步,LSTM 神经网络都学习预测下一个时间步的值。原创 2024-03-03 12:36:07 · 5086 阅读 · 2 评论 -
【Python机器学习】详解Python机器学习进行时间序列预测
时间序列预测是一种基于时间序列数据的预测方法,通常用于预测未来某个时间点的数值。在Python中,可以使用多种库和工具进行时间序列预测,例如ARIMA、Prophet等。原创 2024-02-19 21:49:34 · 3801 阅读 · 0 评论 -
【深度学习】详解利用Matlab和Python中 LSTM 网络实现序列分类
在Matlab中可以使用深度学习工具箱中的lstmLayer函数来实现LSTM网络; Python 和 Keras 库实现 LSTM 网络进行序列分类。原创 2024-01-21 17:53:53 · 772 阅读 · 0 评论 -
Matlab深度学习进行波形分割(二)
🔐####🔐💗 大家好🤗🤗🤗,我是!好久不见💗💗今天分享——💗,左手の明天的第篇原创博客📚🔐####🔐接上上一篇文章 详解Matlab深度学习进行波形分割。原创 2024-01-14 20:13:19 · 1361 阅读 · 0 评论 -
详解Matlab深度学习进行波形分割
主要说明如何使用matlab递归深度学习网络和时频分析来分割人体心电图 (ECG) 信号。原创 2024-01-14 20:00:47 · 1189 阅读 · 0 评论 -
详解Python神经网络
神经网络是一种模拟人脑神经元工作方式的计算模型,通常用于机器学习和深度学习。在Python中,有许多库可以用于构建和训练神经网络,其中最流行的是TensorFlow和PyTorch。原创 2023-12-17 17:16:18 · 2269 阅读 · 0 评论 -
Python机器学习预测房价
要使用Python进行房价预测,可以使用机器学习算法。本文通过利用线性回归算法进行预测房价,同时使用Python和Numpy构建神经网络模型来预测波士顿房价。原创 2023-12-16 22:52:50 · 3326 阅读 · 0 评论 -
Python+AI实现AI绘画
Python是一种流行的编程语言,可用于创建各种应用程序,包括AI绘画。AI绘画是使用机器学习和深度学习技术来生成艺术作品的过程。在Python中,可以使用各种库和框架来实现AI绘画。原创 2023-12-11 08:00:00 · 5124 阅读 · 4 评论 -
ChatGPT强到离谱,这么十一款ChatGPT浏览器插件你值得拥有
今天推荐几款可以提高工作效率的ChatGPT浏览器插件,配合AI工具的使用,可以事半功倍。这几款ChatGPT浏览器插件大家都值得拥有,赶紧点赞收藏起来。原创 2023-05-29 08:00:00 · 17914 阅读 · 7 评论 -
分享github上比较热门的ChatGPT项目,值得收藏
国内的开发者依托openAI的接口,开发了许多ChatGPT的项目,并且在GitHub 上进行了开源,确实有很多实用的应用项目,今天就整理一下github上最热门的ChatGPT项目,跟大家分享。原创 2023-04-22 16:40:43 · 10284 阅读 · 2 评论 -
比肩ChatGPT的国产AI:文心一言——有话说
文心一言的交互方式更加接近对话式,能够与用户进行更自然、更流畅的交互,有利于提高用户的满意度和使用体验。而ChatGPT则更注重语言的精度和处理效率,能够更好地满足用户的实际需求。原创 2023-03-27 17:23:51 · 40777 阅读 · 78 评论 -
ChatGPT加强版GPT-4面世,打工人的方式将被颠覆
GPT-4,核心技术是基于Transformer的自回归语言模型,它使用了大量的无标注数据进行预训练,学习了自然语言和其他模态之间的通用表示和关系。原创 2023-03-19 19:58:09 · 18180 阅读 · 9 评论 -
超详细讲解CTC理论和实战
CTC理论和实战CTC简介CTC算法详解对齐损失函数预测CTC算法的特性条件独立对齐使用CTC进行变长验证码识别问题描述和解决方法安装WarpCTC得到tensorflow源代码设置环境变量TENSORFLOW_SRC_PATH修改配置build安装测试安装是否成功运行代码代码阅读数据处理network.pyLSTM_train类资源传送门「❤️ 感谢大家」CTC简介对于语音识别来说,训练数据的输入是一段音频,输出是它转录的文字(transcript),但是我们是不知道字母和语音是怎么对齐(align)原创 2020-12-22 09:08:42 · 3809 阅读 · 1 评论 -
用python实现前向分词最大匹配算法
前向分词最大匹配算法理论介绍前向最大匹配算法具体代码实现分词结果理论介绍分词是自然语言处理的一个基本工作,中文分词和英文不同,字词之间没有空格。中文分词是文本挖掘的基础,对于输入的一段中文,成功的进行中文分词,可以达到电脑自动识别语句含义的效果。中文分词技术属于自然语言处理技术范畴,对于一句话,人可以通过自己的知识来明白哪些是词,哪些不是词,但如何让计算机也能理解?其处理过程就是分词算法。可以将中文分词方法简单归纳为:基于词表的分词方法基于统计的分词方法基于序列标记的分词方法其中,基于词表原创 2020-08-05 21:32:25 · 906 阅读 · 0 评论 -
成功解决问题:ModuleNotFoundError: No module named 'paddle'或者 No module named 'paddle.fluid'
在这里记录一下解决问题:ModuleNotFoundError: No module named 'paddle’或者 No module named 'paddle.fluid’的过程。。。希望对大家有用,能让大家少走点弯路!!!!当然你能来个三连击那是更好的!!!!!!在利用paddlehub进行深度学习预测是时候需要导入资源包import paddlehub as hub在Wi...原创 2020-04-29 11:42:20 · 38687 阅读 · 34 评论 -
python机器学习入门案例——基于SVM分类器的鸢尾花分类(附完整代码)
数据集介绍总共包含150行数据每一行数据由 4 个特征值及一个目标值组成。4 个特征值分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度目标值为三种不同类别的鸢尾花,分别为: Iris Setosa、Iris Versicolour、Iris Virginica数据集中每朵鸢尾花叫做一个数据点,它的品种叫做它的标签数据集样式:导入需要的模块包import numpy as n...原创 2020-04-26 21:22:28 · 6679 阅读 · 4 评论 -
带你彻底理解朴素贝叶斯算法与实现
超级详细对朴素贝叶斯算法进行讲解,能让你对朴素贝叶斯算法的认识有质的飞跃。。。。朴素贝叶斯算法与实现1. 朴素贝叶斯是什么1.1 先验概率1.2 条件概率1.3 全概率公式1.4 后验概率2. 朴素贝叶斯的推导3. 参数估计3.1 极大似然估计3.2 贝叶斯估计4. 朴素贝叶斯算法过程5. 朴素贝叶斯分类流程图6. 朴素贝叶斯算法分析1. 朴素贝叶斯是什么依据《统计学方法》上介绍:朴素...转载 2020-03-27 14:27:18 · 877 阅读 · 0 评论 -
机器学习:发展历史
原创 2020-03-18 15:01:45 · 336 阅读 · 0 评论