
周报
文章平均质量分 94
暖阳之下
桂电计算机研0,研究方向AI,记录自己的成长经历
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI基础学习周报七
本周聚焦时间序列Transformer机制解析与数据分析工具实践。深入研究Transformer在时序预测中的效能本质,通过互信息分析与合成数据集验证,揭示模型性能主要由单变量趋势捕捉能力而非复杂注意力机制主导;系统学习Matplotlib可视化技术,掌握多子图绘制、样式定制及图表属性控制;全面实践Pandas数据处理流程,涵盖对象创建、索引操作、数据变形及透视分析,构建了从理论到应用的数据分析能力矩阵。翻译成英文原创 2025-08-03 10:18:48 · 764 阅读 · 0 评论 -
AI基础学习周报六
本周聚焦多模态大模型架构设计与视觉计算高效化创新。系统解析了MLLM构建的两种核心范式:统一嵌入解码器架构通过图像编码器实现视觉-文本特征对齐,跨模态注意力架构利用交叉注意力机制实现动态特征交互;深入研读OverLoCK论文提出的深度阶段分解策略与上下文混合动态卷积,模拟人类视觉"先概览后细察"机制;剖析ESC超分辨率网络通过卷积化自注意力与Flash Attention优化实现的性能突破,在保持Transformer优势的同时显著降低计算负载。原创 2025-07-27 10:40:22 · 717 阅读 · 0 评论 -
AI基础学习周报五
本周聚焦模型优化与多模态LLM技术。在模型优化方面,系统研究了量化技术的位精度实现方法、稀疏矩阵的压缩特性及蒸馏学习的知识迁移机制;在多模态LLM领域,深入对比了统一嵌入解码器与跨模态注意力两种架构的实现差异与训练策略,构建了从模型压缩到多模态扩展的技术框架。原创 2025-07-18 17:09:20 · 763 阅读 · 0 评论 -
AI基础学习周报四
本周系统研究了注意力机制的核心原理与应用形式。深入解析了基础注意力机制的三要素Query、Key、Value及其计算流程,明确区分了注意力机制与自注意力机制的本质差异。探讨了多头注意力通过多组投影提升特征捕获能力的实现方式,分析了通道注意力机制特别是SENet的通道权重优化原理。最后系统梳理了大语言模型的分类体系与训练流程,涵盖语言模型、视觉模型和多模态模型的构建方法及其预训练到微调的完整范式,构建了从基础机制到前沿应用的认知框架。原创 2025-07-13 11:04:02 · 1047 阅读 · 0 评论 -
AI基础学习周报三
本周深入研究了序列建模前沿方法与经典架构。重点研读了2025年新作《Improving Bilinear RNNs with Closed-loop Control》,该论文提出Comba架构:通过输入/输出反馈闭环机制增强双线性RNN,采用SPLR状态衰减矩阵平衡表达效率,结合块级并行化实现推理速度提升40%。系统回顾了Transformer核心组件,包括自注意力机制、多头注意力、位置编码及编解码器结构,详解了残差连接与层归一化的设计原理。最后实践了Softmax回归的概率映射机制及其代码实现。原创 2025-07-06 10:02:51 · 897 阅读 · 0 评论 -
AI基础学习周报二
本周重点研究了梯度下降算法及其优化方法包括随机梯度下降与动量法、反向传播算法的计算图实现原理,以及常见激活函数如Sigmoid、Tanh和ReLU的特性与优劣。在PyTorch实践部分,系统学习了数据加载流程涉及Dataset与DataLoader、TensorBoard可视化工具、Transforms数据预处理方法如Resize、Normalize和RandomCrop,并完成了神经网络模块的构建与训练流程。通过理论推导与代码实践,深入理解了深度学习模型训练的核心组件及其在PyTorch框架中的实现机制。原创 2025-06-28 18:55:10 · 1169 阅读 · 0 评论 -
机器学习课程学习周报一
本周系统学习了李宏毅机器学习基础内容,深入理解了机器学习的三大核心任务,即回归任务、分类任务和结构化学习,以及完整的训练流程,包括模型定义、损失函数设计和基于梯度下降的优化方法。同时,掌握了 PyTorch 的核心操作,例如张量的创建与运算如加法、索引和尺寸修改,张量与 NumPy 数组的相互转换,以及如何利用 GPU 加速计算的 CUDA 张量应用。原创 2025-06-22 10:29:10 · 1028 阅读 · 0 评论