
深度学习算法
文章平均质量分 87
算法原理+项目整理+论文推荐
学算法的程霖
好好学习天天向上
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
一个小改动,CNN输入固定尺寸图像改为任意尺寸图像!!
本文小白将和大家一起学习如何在不使用计算量很大的滑动窗口的情况下对任意尺寸的图像进行图像分类。通过修改,将ResNet-18CNN框架需要224×224尺寸的图像输入改为任意尺寸的图像输入。首先,我们澄清一个对卷积神经网络(CNN)的误解。如果用过CNN对图像进行分类,我们需要对输入图像进行裁剪或调整大小使其满足CNN网络所需的输入大小。虽然这种做法非常普遍,但是使用此方法存在一些局限。:如果在一幅大图中有一只小狗但其只占据图像中的一小部分,则调整图像的大小会使照片中的狗变得更小,以致无法正确分类图像。原创 2025-05-16 16:32:11 · 889 阅读 · 0 评论 -
一文彻底帮你搞懂!!!深度学习框架PyTorch,超详细代码解释!
PyTorch 是一个用于机器学习和深度学习的开源深度学习框架,由 Facebook 于 2016 年发布,其主要实现了自动微分功能,并引入动态计算图使模型建立更加灵活。【pytorch算法入门到进阶教程】【2025】这才是科研人该学的pytorch教程!通俗易懂,完全可以自学,7天带你构建神经网络,解决pytorch框架问题!深度学习|机器学习|人工智能这才是科研人该学的!一口气学完深度学习【TensorFlow、PyTorch 和、Keras】三大框架算法原理及实战!通俗易懂,草履虫都能学会!原创 2025-05-15 10:44:02 · 1488 阅读 · 0 评论 -
复活CNN!港大 CVPR 2025 高分论文,助力卷积神经网络效率暴涨还省显存!
在深度学习蓬勃发展的当下,卷积神经网络视觉基础模型正不断拓展着视觉处理领域的边界。这些模型如同精密的视觉感知引擎,深度挖掘图像、视频中的关键信息,在安防监控、自动驾驶、医疗影像分析等诸多领域发挥着不可替代的作用。其中港大研究人员这篇入选CVPR 2025的高分论文,提出新型纯CNN架构OverLoCK借鉴人类视觉系统“先概览后细察”的运作模式,创新性地采用深度阶段分解策略(DDS)与上下文混合动态卷积(ContMix)。原创 2025-04-24 17:47:30 · 1571 阅读 · 0 评论 -
深度学习最强模型!挑战一篇文章让你理解什么是Transformer模型!从原理到代码的详细讲解!
从最初的机器翻译到如今的多模态大模型,Transformer 凭借注意力机制的革命性创新,重新定义了深度学习的可能性。其核心价值不仅在于技术突破,更在于构建了一个通用的序列建模框架,使得跨领域迁移学习成为可能。未来,随着注意力机制的持续优化(如动态稀疏注意力、因果推理增强)和硬件加速技术的发展,Transformer 有望在自动驾驶、科学发现等更复杂场景中发挥关键作用,推动人工智能向通用化迈进。附:术语对照表术语含义描述自注意力机制,捕捉序列内部关联多头注意力,分頭计算增强表征能力。原创 2025-04-21 10:16:03 · 753 阅读 · 0 评论 -
科研小白也能看懂这三大模型:CNN、Transformer、BERT
CNN:局部特征专家,适合网格数据(如图像)。Transformer:全局关系建模者,适合序列数据(如文本)。BERT:Transformer的NLP实践者,通过预训练实现通用语义理解。大神勿进!适合新手入门的自然语言处理教程,7天NLP算法入门进阶,一口气学完transformer、seq2seq、语音合成,太通俗易懂了!机器学习|深度学习这才是科研人该学的!基于深度学习的遥感图像分类实战,一口气学完图像处理、特征提取、分类算法、变化检测、图像配准、辐射校正等7大算法!通俗易懂,新手也能学会!原创 2025-04-15 16:33:59 · 1110 阅读 · 0 评论 -
一网打尽!5大深度学习模型!RNN、CNN、Transformer、BERT、GPT
从 RNN 的时序记忆到 GPT 的生成革命,深度学习模型的演进始终围绕 “如何更高效地提取数据特征” 这一核心命题。开发者可根据任务特性(如图像 vs 文本、理解 vs 生成)选择适配模型,同时关注 Transformer 架构的持续创新 —— 这一 “万能基底” 正不断突破模态边界,引领 AI 从 “专项智能” 迈向 “通用智能”。未来,模型的性能提升将更多依赖数据质量、训练策略与工程优化的协同创新,为各行业智能化转型提供更强大的动力。推荐up:coward咿呀咿t=P1C7t=P1C7。原创 2025-04-21 09:45:12 · 1121 阅读 · 0 评论 -
科研小白如何快速学会人工智能算法?!超详细攻略
1️⃣ 算法一头雾水:论文里的CNN、Transformer根本看不懂,代码复现全靠“玄学调参”…🔥 工业级项目实战:从图像分类到目标检测,完整流程跑通,直接移植到你的课题!2️⃣ 代码地狱模式:GitHub下载的模型一堆报错,环境配置能卡你一周!🔥 自动化实验管理:训练曲线、超参数对比可视化,审稿人爱的严谨性轻松拿捏!4️⃣ 实验一团乱麻:结果不可复现,审稿人一句“缺乏对比实验”直接破防…▸ 配套 《科研论文复现指南》,教你拆解顶会论文的算法精髓!✅ 【独家实训平台——你的“科研加速器”】原创 2025-04-22 16:16:15 · 351 阅读 · 0 评论 -
2025年如何快速加入人工智能职业红海?零基础入门指南,3个月脱胎换骨!
适合新手入门的人工智能学习方向!完整版本!原创 2025-04-17 10:08:11 · 1094 阅读 · 0 评论