AI大模型:(二)3.1 微调训练详解

     

目录

1.什么是微调

1.1.Zero Shot Learning(零样本学习)

1.2.One Shot Learning(单样本学习)

1.3.Few Shot Learning(少样本学习)

1.4.微调(Fine-tuning)

2.微调方式

2.1.按方法分类(How)

2.1.1.全参微调(Full Fine-tuning)

2.1.2. 部分参微调(Partial Fine-tuning)

2.1.3.参数高效微调(PEFT)

2.1.4. 量化微调(Quantized Fine-tuning)

2.1.5. 混合方法

2.2.按目标分类(Why) 

2.2.1. 任务适配微调(Task-Specific Fine-tuning)

2.2.2. 领域适配微调(Domain Adaptation)

2.2.3. 指令微调(Instruction Fine-tuning)

2.2.4. 人类偏好对齐(Human-Alignment Fine-tuning)

2.2.5. 多任务微调(Multi-Task Learning)

2.2.6. 持续学习(Continual Learning)

2.3.详细说明

3.微调工具

3.1. Unsloth

概述

核心特点

示例代码

3.2. Llama-Factory

概述

核心特点

典型流程

3.3 ms-SWIFT

概述

核心特点

应用示例

3.4.对比总结


       近年来,以GPT、LLaMA为代表的大语言模型(LLM)迅猛发展,推动预训练技术成为人工智能领域的主流范式。 尽管预训练大模型展现出强大的通用能力,但在实际落地时仍需针对垂直场景进行任务适配。相较于需要海量数据和超大规模计算资源的预训练(或从头训练)——这对多数企业和研究机构而言成本过高——模型微调(Fine-Tuning) 提供了一种高效解决方案:通过调整部分模型参数,仅需少量领域数据即可显著提升任务性能,实现资源与效果的平衡。我们提及微调更多是在通用 SFT 训练好的模型基础上再做领域的微调。从传统的全参数微调,到参数高效微调技术(PEFT)如LoRA、Adapter的演进,微调方法持续轻量化,助力大模型在工业场景中的灵活部署。本文将系统梳理核心技术框架与实践路径,帮助开发者低成本释放大模型潜力。

1.什么是微调

       说起微调就提一下Zero

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hay_lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值