目录
2.1.2. 部分参微调(Partial Fine-tuning)
2.1.4. 量化微调(Quantized Fine-tuning)
2.2.1. 任务适配微调(Task-Specific Fine-tuning)
2.2.2. 领域适配微调(Domain Adaptation)
2.2.3. 指令微调(Instruction Fine-tuning)
2.2.4. 人类偏好对齐(Human-Alignment Fine-tuning)
2.2.5. 多任务微调(Multi-Task Learning)
2.2.6. 持续学习(Continual Learning)
近年来,以GPT、LLaMA为代表的大语言模型(LLM)迅猛发展,推动预训练技术成为人工智能领域的主流范式。 尽管预训练大模型展现出强大的通用能力,但在实际落地时仍需针对垂直场景进行任务适配。相较于需要海量数据和超大规模计算资源的预训练(或从头训练)——这对多数企业和研究机构而言成本过高——模型微调(Fine-Tuning) 提供了一种高效解决方案:通过调整部分模型参数,仅需少量领域数据即可显著提升任务性能,实现资源与效果的平衡。我们提及微调更多是在通用 SFT 训练好的模型基础上再做领域的微调。从传统的全参数微调,到参数高效微调技术(PEFT)如LoRA、Adapter的演进,微调方法持续轻量化,助力大模型在工业场景中的灵活部署。本文将系统梳理核心技术框架与实践路径,帮助开发者低成本释放大模型潜力。
1.什么是微调
说起微调就提一下Zero