实现一下模式识别(一)Parzen窗估计

本文介绍了如何使用Parzen窗估计进行非参数估计,详细阐述了算法过程,并通过Python的numpy库实现了样本数据分类。通过计算比较,确定数据所属类别,同时展示了用pyplot将数据和目标点可视化的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己计划实现一遍模式识别里的内容。

Parzen窗估计是非参数估计。我在非参数技术——Parzen窗估计方法文章和非参数估计-Parzen窗口函数法文章里面整理出了算法基本过程:利用第一篇博客给出的样本数据对给定的数据进行分类。分类的方法就是根据公式分别求出对于三个类的数值。公式是

P_n(x)=\frac{1}{n}\sum_{i=1}^{n}\frac{1}{h^{3}}exp[-(x-x_i)^T(x-x_i)/(2h^2) ]

求出来数值之后,比较大小,给定数据属于数值较大的一类。运算通过numpy包实现,通过循环得出数值,进行比较。

代码实现如下,计算的结果和非参数技术——Parzen窗估计方法文中给的内容基本一致。


                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值