在这篇文章中,我们将介绍如何使用PGVector,一个Postgres的向量相似性搜索包,来增强数据库的搜索能力。我们将展示如何创建一个PGVector向量存储以及如何使用SelfQueryRetriever来实现智能化的检索功能。
技术背景介绍
传统的数据库搜索通常是基于精确匹配的,而随着自然语言处理和机器学习技术的进步,向量相似性搜索能够更智能地理解和匹配相似内容。PGVector是一个为Postgres打造的插件,帮助您在数据库中进行高效的向量相似性搜索。
核心原理解析
PGVector基于向量化的方式存储和检索数据,将文本和其他非结构化数据转换为向量,并通过计算这些向量的相似性来进行搜索。这种方法可以有效提升搜索的准确性和智能化水平。
代码实现演示
首先,我们需要安装必要的Python包:
%pip install --upgrade --quiet lark pgvector psycopg2-binary
然后,我们获取OpenAI API Key以使用OpenAI的嵌入服务:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
接下来,我们创建一个PGVector向量存储,并用一些电影摘要数据进行初始化:
from langchain_community.vectorstores import PGVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
collection = "my_movie_collection"
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
# ... 添加更多文档 ...
]
vectorstore = PGVector.from_documents(
docs,
embeddings,
collection_name=collection,
)
创建self-querying检索器:
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
# ... 更多属性信息 ...
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
verbose=True
)
测试我们的检索器:
# 查询相关的电影
retriever.invoke("What are some movies about dinosaurs")
# 过滤高评分电影
retriever.invoke("I want to watch a movie rated higher than 8.5")
应用场景分析
这些技术可以广泛应用于需要高效内容检索的领域,如电影搜索引擎、客户服务FAQ系统、或任何文本密集型的数据库。
实践建议
在使用PGVector时,确保数据库有足够的计算资源来处理向量计算。同时,注意API的调用频率,以优化成本和性能。
如果遇到问题欢迎在评论区交流。
—END—