一、L2正则化介绍
L2正则化,也称为岭回归(Ridge Regression),是一种常用的正则化方法。它在线性回归模型中通过在损失函数中添加L2范数的平方来惩罚模型的复杂度,从而防止过拟合。
在线性回归中,我们的目标是最小化损失函数,通常以最小化均方误差来衡量。而L2正则化通过在损失函数中添加模型参数的L2范数的平方来进行正则化。L2范数是指模型参数的平方和的开方。正则化惩罚的目标是使模型参数尽量接近于零,以降低模型的复杂度。
L2正则化的特点
【1】 缩小模型参数:L2正则化惩罚项会使模型参数趋向于较小的值,这有助于减少特征之间的相关性和噪声对模型的影响,提高模型的泛化能力。
【2】 解决多重共线性:当数据集中的特征之间存在高度相关性(多重共线性)时,L2正则化可以通过减小参数的值来降低特征之间的相关性,改善模型的表现。
【3】 平衡模型的拟合程度和复杂度:与L1正则化相比,L2正则化对于参数的惩罚更均衡,更倾向于保留所有的特征,而不是将某些特征的系数置为零。
L2正则化的应用场景:
【1】 特征选择:L2正则化可以通过调整正则化参数的大小,根据特征的重要性选择最优特征,剔除对模型预测不重要的特征。
【2】 预测建模:当数据集中的特征较多,且存在特征之间的相关性时,L2正则化可以通过抑制特征之间的相关性提高模型的稳定性和泛化能力。
【3】 回归问题:L2正则化在线性回归问题中有广泛的应用,可以通过控制正则化参数的大小来平衡模型的拟合程度和复杂度。
示例:
import numpy as np
import matplotlib.pyplot as plt
# 准备数据集
X = np.array([[1, 2], [2, 4], [3, 6], [4, 8], [5, 10]])
y = np.array([2, 3, 4, 5, 6])
# 绘制数据集
plt.scatter(X[:, 0], y)