
行人重识别 ReID
文章平均质量分 74
songlixiangaibin
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于人体姿态识别算法的行人抬手分析
文章目录前言一、软件操作图二、使用步骤2.输出人体关键点2.角度计算3.相似度分析总结前言使用人体姿态识别算法检测出人体上半身关键点,根据关键点连线的关系判断出行人抬手的动作,并对两个行人抬手动作进行抬手相似度分析。一、软件操作图1.加载视频进行抬手动作分析,输出抬手角度,抬手动作时间。2.横坐标为帧数,纵坐标为抬手角度,抬手角度一阶导数、抬手角度二阶导数,作图。3.使用动态规划进行曲线相似度分析。二、使用步骤2.输出人体关键点kp_points, kp_scores, boxes =原创 2022-01-20 22:20:00 · 3179 阅读 · 1 评论 -
YoloV5 + deepsort + Fast-ReID 完整行人重识别系统(三)
Fast-Reid系列文章目录文章目录Fast-Reid系列文章目录前言一、yolov5 + deepsort2.行人计数二、Reid提取特征总结前言使用Fast-Reid框架训练了自己应用场景下的模型,训练策越为融合了大量开源reid数据集在加上自己的数据一起训练总共30W+的数据。一、yolov5 + deepsort使用yolov5实现行人检测,deepsort进行跟踪,在遮挡的情况下能较好的防止reid模型误识别。本人将yolov5、deepsort分别封装成了类,很容易嵌入到自己的原创 2021-01-30 13:17:39 · 55135 阅读 · 183 评论 -
半自动的行人重识别数据标注算法Tracking + infomap
Fast-ReID系列文章目录文章目录Fast-ReID系列文章目录前言一、行人截取二、行人聚类聚类优化前言本人做行人重识别工程的数据准备过程。借鉴人脸的数据聚类清洗方法实现半自动行人重识别数据标注。一、行人截取使用行人跟踪算法,讲视频中行人截取出来: 使用yolov5 + deepsort 实现行人跟踪参考此方法Yolov5_DeepSort GitHub,并稍作修改以过滤掉不完整和太小的行人1. 限制检测到行人的长宽比例和大小w = x2 - x1h = y2 - y1person原创 2021-01-07 11:12:27 · 3560 阅读 · 6 评论 -
Fast-ReID 训练自己的数据集调优记录(二)
数据集准备文章目录数据集准备前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filte原创 2020-11-02 10:07:36 · 16551 阅读 · 16 评论 -
SpCL阅读笔记:Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID
行人重识别(ReID)系列文章目录Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID目录行人重识别(ReID)系列文章目录前言一、Abstract二、IntroductionRelated WorksMethodology构建和更新混合记忆用于对比学习统一的对比学习前言论文链接github源码OpenUnReID本人对行人重识别的记录,在针对对象re-ID(包括人员re-ID和车辆原创 2020-10-29 11:00:26 · 2037 阅读 · 0 评论 -
Fast-ReID 训练自己的数据集调优记录(一)
系列文章目录文章目录系列文章目录前言一、Fast-ReID 介绍Fast-ReID 特点FastReID架构二、Fast-ReID 复现二、使用步骤1.引入库2.读入数据总结前言FastReID 是一个 SOTA 级的 ReID 方法集合工具箱(SOTA ReID Methods and Toolbox),同时面向学术界和工业界落地,此外该团队还发布了在多个不同任务、多种数据集上的SOTA模型。FastReID中实现的四大ReID任务:行人重识别部分区域的行人重识别跨域的行人重识别车辆的原创 2020-10-23 13:03:33 · 15812 阅读 · 6 评论