Qwen-Agent是一个开发框架。开发者可基于本框架开发Agent应用,充分利用基于通义千问模型(Qwen)的指令遵循、工具使用、规划、记忆能力。本项目也提供了浏览器助手、代码解释器、自定义助手等示例应用。 现在,Qwen-Agent 作为 Qwen Chat 的后端运行。
更新
- 🔥🔥🔥May 1, 2025: 新增 Qwen3 Tool-call Demo;新增 MCP cookbooks。
- Mar 18, 2025: 支持
reasoning_content
字段;调整默认的Function Call模版(适用于Qwen2.5系列通用模型、QwQ-32B)。如果需要使用旧版模版:请参考样例传递参数。 - Mar 7, 2025: 新增QwQ-32B Tool-call Demo,支持并行、多步、多轮工具调用。
- Dec 3, 2024: GUI 升级为基于 Gradio 5。注意:如果需要使用GUI,Python版本需要3.10及以上。
- Sep 18, 2024: 新增Qwen2.5-Math Demo以展示Qwen2.5-Math基于工具的推理能力。注意:代码执行工具未进行沙箱保护,仅适用于本地测试,不可用于生产。
开始上手
安装
- 从 PyPI 安装稳定版本:
pip install -U "qwen-agent[rag,code_interpreter,gui,mcp]" # 或者,使用 `pip install -U qwen-agent` 来安装最小依赖。 # 可使用双括号指定如下的可选依赖: # [gui] 用于提供基于 Gradio 的 GUI 支持; # [rag] 用于支持 RAG; # [code_interpreter] 用于提供代码解释器相关支持; # [mcp] 用于支持 MCP。
- 或者,你可以从源码安装最新的开发版本:
git clone https://github.com/QwenLM/Qwen-Agent.git cd Qwen-Agent pip install -e ./"[gui,rag,code_interpreter,mcp]" # 或者,使用 `pip install -e ./` 安装最小依赖。
准备:模型服务
Qwen-Agent支持接入阿里云DashScope服务提供的Qwen模型服务,也支持通过OpenAI API方式接入开源的Qwen模型服务。
-
如果希望接入DashScope提供的模型服务,只需配置相应的环境变量
DASHSCOPE_API_KEY
为您的DashScope API Key。 -
或者,如果您希望部署并使用您自己的模型服务,请按照Qwen2的README中提供的指导进行操作,以部署一个兼容OpenAI接口协议的API服务。 具体来说,请参阅vLLM一节了解高并发的GPU部署方式,或者查看Ollama一节了解本地CPU(+GPU)部署。 注意对于QwQ和Qwen3模型,建议启动服务时加
--enable-reasoning
和--reasoning-parser deepseek_r1
两个参数,不加--enable-auto-tool-choice
和--tool-call-parser hermes
两个参数,因为Qwen-Agent会自行解析vLLM的工具输出。
快速开发
框架提供了大模型(LLM,继承自class BaseChatModel
,并提供了Function Calling功能)和工具(Tool,继承自class BaseTool
)等原子组件,也提供了智能体(Agent)等高级抽象组件(继承自class Agent
)。
以下示例演示了如何增加自定义工具,并快速开发一个带有设定、知识库和工具使用能力的智能体:
import pprint import urllib.parse import json5 from qwen_agent.agents import Assistant from qwen_agent.tools.base import BaseTool, register_tool from qwen_agent.utils.output_beautify import typewriter_print # 步骤 1(可选):添加一个名为 `my_image_gen` 的自定义工具。 @register_tool('my_image_gen') class MyImageGen(BaseTool): # `description` 用于告诉智能体该工具的功能。 description = 'AI 绘画(图像生成)服务,输入文本描述,返回基于文本信息绘制的图像 URL。' # `parameters` 告诉智能体该工具有哪些输入参数。 parameters = [{ 'name': 'prompt', 'type': 'string', 'description': '期望的图像内容的详细描述', 'required': True }] def call(self, params: str, **kwargs) -> str: # `params` 是由 LLM 智能体生成的参数。 prompt = json5.loads(params)['prompt'] prompt = urllib.parse.quote(prompt) return json5.dumps( {'image_url': f'https://image.pollinations.ai/prompt/{prompt}'}, ensure_ascii=False) # 步骤 2:配置您所使用的 LLM。 llm_cfg = { # 使用 DashScope 提供的模型服务: 'model': 'qwen-max-latest', 'model_server': 'dashscope', # 'api_key': 'YOUR_DASHSCOPE_API_KEY', # 如果这里没有设置 'api_key',它将读取 `DASHSCOPE_API_KEY` 环境变量。 # 使用与 OpenAI API 兼容的模型服务,例如 vLLM 或 Ollama: # 'model': 'Qwen2.5-7B-Instruct', # 'model_server': 'http://localhost:8000/v1', # base_url,也称为 api_base # 'api_key': 'EMPTY', # (可选) LLM 的超参数: 'generate_cfg': { 'top_p': 0.8 } } # 步骤 3:创建一个智能体。这里我们以 `Assistant` 智能体为例,它能够使用工具并读取文件。 system_instruction = '''在收到用户的请求后,你应该: - 首先绘制一幅图像,得到图像的url, - 然后运行代码`request.get`以下载该图像的url, - 最后从给定的文档中选择一个图像操作进行图像处理。 用 `plt.show()` 展示图像。 你总是用中文回复用户。''' tools = ['my_image_gen', 'code_interpreter'] # `code_interpreter` 是框架自带的工具,用于执行代码。 files = ['./examples/resource/doc.pdf'] # 给智能体一个 PDF 文件阅读。 bot = Assistant(llm=llm_cfg, system_message=system_instruction, function_list=tools, files=files) # 步骤 4:作为聊天机器人运行智能体。 messages = [] # 这里储存聊天历史。 while True: # 例如,输入请求 "绘制一只狗并将其旋转 90 度"。 query = input('\n用户请求: ') # 将用户请求添加到聊天历史。 messages.append({'role': 'user', 'content': query}) response = [] response_plain_text = '' print('机器人回应:') for response in bot.run(messages=messages): # 流式输出。 response_plain_text = typewriter_print(response, response_plain_text) # 将机器人的回应添加到聊天历史。 messages.extend(response)
除了使用框架自带的智能体实现(如class Assistant
),您也可以通过继承class Agent
来自行开发您的智能体实现。
框架还提供了便捷的GUI接口,支持为Agent快速部署Gradio Demo。 例如上面的例子中,可以使用以下代码快速启动Gradio Demo:
from qwen_agent.gui import WebUI WebUI(bot).run() # bot is the agent defined in the above code, we do not repeat the definition here for saving space.
现在您可以在Web UI中和Agent对话了。更多使用示例,请参阅examples目录。
FAQ
如何使用MCP?
可以在开源的MCP Sever网站上选择需要的工具,并配置相关环境。
Qwen-Agent中MCP调用格式:
{
"mcpServers": {
"memory": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-memory"]
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"]
},
"sqlite" : {
"command": "uvx",
"args": [
"mcp-server-sqlite",
"--db-path",
"test.db"
]
}
}
}
具体可参考MCP使用例子
运行该例子需要额外安装的依赖有:
# Node.js(访问 Node.js 官网下载并安装最新版本, https://nodejs.org/)
# uv 0.4.18 或更高版本 (使用 uv --version 检查)
# Git (git --version 检查)
# SQLite (sqlite3 --version 检查)
# 对于 macOS 用户,可以使用 Homebrew 安装这些组件:
brew install uv git sqlite3
# 对于 Windows 用户,可以使用 winget 安装这些组件:
winget install --id=astral-sh.uv -e
winget install git.git sqlite.sqlite