快速排序
快速排序(Quick Sort)的基本思想是:通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序的目的。
我们来看下实现代码:
- (1)在待排序的序列中找一个基准值—[left, right)— 区间中最后一个元素
- (2)方法:按基准值将序列分割成左右两部分
- (3)排基准值的左边
- (4)排基准值的右边
void QuickSort(int *array, int left, int right)//递归
{
if (right - left > 1)
{
//在[left, right)找基准值来划分区间,最后返回基准值在区间中的位置
int boundary = Partion1(array, left, right);
//int boundary = Partion2(array, left, right);
//int boundary = Partion3(array, left, right);
QuickSort(array, left, boundary);
QuickSort(array, boundary + 1, right);
}
}
复杂度分析
- 时间复杂度
最优的情况下:O(n㏒n)
最坏的情况下 :O(n²)
平均的情况:O(n㏒n) - 空间复杂度
就空间复杂度而言,主要是递归造成的栈空间的使用,最好情况下,递归树的深度为㏒₂n,其空间复杂度也就为O(㏒n),最坏的情况,需要进行n-1递归调用,其空间复杂度为O(n),平均情况,空间复杂度也为O(㏒n)。
稳定性分析
在中枢元素和序列中一个元素交换的时候,很有可能把前面的元素的稳定性打乱。还是看一个小实例:6 4 4 5 4 7 8 9,第一趟排序,中枢元素6和第三个4交换就会把元素4的原序列破坏,所以快速排序不稳定。
//三数取中法(通过这种方法降低取到极值的概率)
int GetMiddleIndex(int *array, int left, int right)
{
int mid = left + ((right - left) >> 1);
if (array[left] < array[right - 1])
{
if (array[mid] < array[left])
return left;
else if (array[mid] > array[right - 1])
return right - 1;
else
return mid;
}
else
{
if (array[mid] > array[left])
return left;
else if (array[mid] < array[right - 1])
return right - 1;
else
return mid;
}
}
int Partion1(int *array, int left, int right)
{
//找基准值
int key;
int begin = left;
int end = right - 1;
int index = GetMiddleIndex(array, left, right);
if (index != right - 1)
Swap(&array[index], &array[right - 1]);
key = array[right - 1];
while (begin < end )
{
//从左往右找比基准值大的元素
while (begin < end && array[begin] <= key)
begin++;
//从右往左找比基准值小的元素
while (begin < end && array[end] >= key)
end--;
if(begin < end)
Swap(&array[begin], &array[end]);
}
if(begin != right-1)
Swap(&array[begin], &array[right-1]);
return begin;
}
//挖坑法
int Partion2(int *array, int left, int right)
{
//找基准值
int key = array[right - 1];
int begin = left;
int end = right - 1;
while (begin < end)
{
//从左往右找比基准值大的元素
while (begin < end && array[begin] <= key)
begin++;
if (begin < end)
{
array[end] = array[begin];
end--;
}
//从右往左找比基准值小的元素
while (begin < end && array[end] >= key)
end--;
if (begin < end)
{
array[begin] = array[end];
begin++;
}
}
array[begin] = key;
return begin;
}
int Partion3(int *array, int left, int right)
{
//找基准值
int key = array[right - 1];
int cur = left;
int prev = cur - 1;
while (cur < right)
{
if (array[cur] < key && ++prev != cur)
Swap(&array[prev], &array[cur]);
++cur;
}
if (++prev != right-1)
Swap(&array[right-1], &array[prev]);
return prev;
}
void QuickSort(int *array, int left, int right)//递归
{
if (right - left > 1)
{
//在[left, right)找基准值来划分区间,最后返回基准值在区间中的位置
int boundary = Partion1(array, left, right);
//int boundary = Partion2(array, left, right);
//int boundary = Partion3(array, left, right);
QuickSort(array, left, boundary);
QuickSort(array, boundary + 1, right);
}
}
#include "Stack.h"
void QuickSortNor(int *array, int size)//循环
{
int left;
int right;
Stack s;
StackInit(&s);
StackPush(&s, size);
StackPush(&s, 0);
while (!StackEmpty(&s))
{
left = StackTop(&s);
StackPop(&s);
right = StackTop(&s);
StackPop(&s);
if (left < right)
{
int boundary = Partion3(array, left, right);
//排左侧-->将右半部分的区间压栈
StackPush(&s, right);
StackPush(&s, boundary + 1);
//排右侧-->将左半部分的区间压栈
StackPush(&s, boundary);
StackPush(&s, left);
}
}
}
//打印函数
void PrintArray(int *array, int size)
{
int i = 0;
for (; i < size; i++)
{
printf("%d ", array[i]);
}
printf("\n");
}
//交换函数
void Swap(int *pLeft, int *pRight)
{
int tmp = *pLeft;
*pLeft = *pRight;
*pRight = tmp;
}
/************************************/
//Stack.h
#pragma once
#define MAXSIZE 10
typedef int SDataType;
typedef struct Stack
{
SDataType _array[MAXSIZE];
int _top; //标记栈顶元素
}Stack;
//初始化
void StackInit(Stack *ps);
//压栈
void StackPush(Stack *ps, SDataType data);
//出栈
void StackPop(Stack *ps);
//返回栈顶元素
SDataType StackTop(Stack *ps);
//返回栈空间长度
int StackSize(Stack *ps);
//栈是否为空
int StackEmpty(Stack *ps);
/****************************************/
//Stack.c
#include <assert.h>
#include <stdio.h>
#include <string.h>
//初始化
void StackInit(Stack *ps)
{
assert(ps);
ps->_top = 0;
}
//压栈
void StackPush(Stack *ps, SDataType data)
{
assert(ps);
if (MAXSIZE == ps->_top)
{
printf("栈空间已满,无法插入!!!\N");
return;
}
ps->_array[ps->_top++] = data;
}
//出栈
void StackPop(Stack *ps)
{
assert(ps);
if (StackEmpty(ps))
return;
ps->_top--;
}
//返回栈顶元素
SDataType StackTop(Stack *ps)
{
assert(ps);
return ps->_array[ps->_top - 1];
}
//返回栈空间长度
int StackSize(Stack *ps)
{
assert(ps);
return ps->_top;
}
//栈是否为空
int StackEmpty(Stack *ps)
{
assert(ps);
return 0 == ps->_top;
}