从零开始的DeepSeek微调训练实战(SFT)(5万字干货)

本文重点介绍使用微调框架unsloth,围绕DeepSeek R1 Distill 7B模型进行高效微调,并介绍用于推理大模型高效微调的COT数据集的创建和使用方法,并在一个medical-o1-reasoning-SFT数据集上完成高效微调实战,并最终达到问答风格优化&知识灌注目的。

你能收获什么:

亲手完成DeepSeek R1蒸馏模型的微调实战

对模型微调、推理数据集等知识有一定了解

对大模型运行的机制和原理有一定的了解

有机会制作一个属于自己的定制化大模型

复现仅需7G显存、半小时运行时间即可完成一次最小可行性实验,并获得微调效果。本人使用的GPU信息如下所示,使用平台为云开发平台ADC:

图片



一、基础概念介绍

1.1 微调与强化学习、模型蒸馏

伴随着DeepSeek的兴起,关于强化学习训练、模型蒸馏等概念也逐渐被人熟知,这里简单总结下这三者的异同。微调、强化学习训练和模型蒸馏都是常用的技术方法,尽管这些方法在某些方面存在交集,但它们的核心原理和任务目标却有显著差异。

1

### 本地环境部署 DeepSeek 及模型微调训练 #### 准备工作 为了能够在本地环境中成功部署 DeepSeek 并进行模型微调训练,需先安装 Ollama。Ollama 是一种提供便捷 LLM 本地运行环境的技术工具,特别适用于像 DeepSeek 这类大型语言模型的部署[^1]。 ```bash pip install ollama ``` #### 微调基础概念和技术原理 了解微调SFT)的基础概念对于顺利开展后续操作至关重要。微调是指利用特定领域的小规模数据集对已有的大规模预训练模型参数做进一步调整的过程。此过程涉及损失函数设计、梯度计算和优化器选择等多个方面[^2]。 #### 数据准备 针对目标应用场景收集并整理相应的语料库作为微调的数据源。这些数据应该尽可能贴近实际业务场景中的对话模式或文本特征,以便让经过微调后的模型能够更好地适应具体任务需求。 #### 环境搭建 完成上述准备工作之后,在本地计算机上配置好必要的软件依赖项和服务组件,确保可以稳定启动 DeepSeek 模型实例,并连接到所需的硬件资源如 GPU 加速卡等设备来加速运算效率。 #### 实现微调过程 编写 Python 脚本来定义具体的微调流程逻辑,包括但不限于加载原始模型权重文件、设置超参选项、迭代更新网络层参数直至收敛为止等内容: ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = 'deepseek-ai/DeepSeek-R1' train_dataset = ... # 自定义读取训练样本的方法 eval_dataset = ... training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, ) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset ) trainer.train() ``` #### 模型评估与验证 最后一步是对已经过微调处理的新版本 DeepSeek 模型进行全面测试,衡量其在不同维度上的表现情况,比如准确性、响应速度等方面是否有显著提升;同时也要关注是否存在潜在风险点需要加以改进之处。 尽管可以在个人电脑上尝试执行以上步骤,但对于性能有限的轻薄笔记本而言,可能会面临诸多挑战。因此建议考虑租赁云端服务器或者采用第三方API服务来进行更高效的开发调试活动[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值