在matlab中绘制多坐标轴、多个y轴,详细注释
以需要绘制4个y轴为例,其中一条为主坐标系左边界、一条为主坐标系右边界,剩余两条在最右侧按一定间隔摆放。
绘制这种形式的坐标系实际上是绘制了四个坐标系,只是右侧三个y轴的坐标系除了y轴以外的其他部分,都变成了透明。下面是原始数据:
x = 1:16;
c0 = [2.34,2.61674,2.60416,3.00439,2.04946,2.972,2.466, ...
2.54408,2.52893,2.36583,2.75612,3.13151,3.044,3.01283 ...
,2.50254,2.86092];
R1 = [845.145,638.911,580.587,503.789,465.654,475.064, ...
517.07,594.854,601.167,458.359,793.633,571.344,737.367, ...
505.613,713.112,736.116];
L1 = [165.601,124.853,102.892,93.3,157.67,99.9744,111.084, ...
198.83,178.872,124.708,108.312,75.3015,153.643,109.335, ...
130.754,121.486];
C1 = [126.487,170.536,209.483,229.089,139.99,210.657, ...
188.547,107.363,110.459,168.741,194.123,283.169, ...
137.212,197.114,166.146,173.119];
先对数据进行归一化,归一化是将数据缩放到一个特定范围内,不改变数据的分布形态,将R1
、L1
、C1
进行归一化;然后进行反归一化,以c0
为参照,这样数据的变化趋势是以c0
为参照,可以方便地在同一幅图像中看出数据的变化趋势。
%% 归一化
R1_0 = guiyi(R1);
L1_0 = guiyi(L1);
C1_0 = guiyi(C1);
%% 反归一化
R1_1 = fanguiyi(R1_0, c0);
L1_1 = fanguiyi(L1_0, c0);
C1_1 = fanguiyi(C1_0, c0);
反归一化之后的数据就是后续代码可以直接使用的数据,将这些数据在同一幅图像中进行绘制。
%% 同一个画面中,绘制四条曲线
figure