HWOD:尼科彻斯定理

一、知识点

m个连续奇数n,n+2,n+4,,,,,之和为

m*n+m*(m-1)/2*2

简化为:m*n+m*(m-1)

二、题目

1、描述

验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。

例如:

1^3=1

2^3=3+5

3^3=7+9+11

4^3=13+15+17+19

输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出

2、输入

输入一个int整数

3、输出

输出分解后的string

三、自己写的代码

#include<stdio.h>
int main() {
    int m, n = 1, i;
    scanf("%d", &m);
    while ((n * m + m * (m - 1)) != m * m * m) {
        n += 2;
    }
    for (i = 1; i < m; i++) {
        printf("%d+", n);
        n += 2;
    }
    printf("%d\n", n);
    return 0;
}

四、测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值