- 博客(683)
- 收藏
- 关注
原创 如何动手做AI Agent ?Agent入门必备神器,PDF无偿分享
半个月前,粗心的我细心地发现,有一本关于 Agent 的书籍,作者还是熟悉的咖哥(黄佳老师,当年拜读过他的《零基础学机器学习》)。而在昨天,我终于收到了!立刻花了半个小时品读起来~觉得还是非常不错的,所以忍不住给大家分享推荐一下!
2025-05-05 15:08:42
251
原创 制造一只电子喵 (qwen2.5:0.5b 微调 LoRA 使用 llama-factory)
使用 llama-factory 工具可以对 AI 语言模型 (LLM) 进行微调 (LoRA SFT), 只需准备数据集即可.可以看到, AI 具有一定的泛化能力, 也就是训练数据集中没有的问题, 模型也可以给出比较合理的回答.此处使用的丹炉不好, 炼不了上品仙丹, 只能用个小模型意思意思. 但原理和操作步骤都是一样的, 只要换上更好的硬件, 准备更多数据, 就能炼制更好更大的仙丹啦 ~AI 并不复杂神秘, 模型只是大 (烧钱) 而已.大力出奇迹, 力大砖飞.
2025-05-04 09:30:00
834
原创 实战来了!QwQ-32B消费级显卡微调全流程
许多朋友敲碗的模型微调教程,今天来啦!我们整理了微调教程。包括数据集处理,模型微调等详细步骤,而且模型消费级别显卡(只需20G显存)也能轻松微调。现在就来一步一步进行模型微调吧!🌟第一步 下载模型和数据集:首先通过modelscope的SDK下载QwQ-32B的4bit动态量化版本QwQ-32B-unsloth-bnb-4bit和数据集medical-o1-reasoning-SFT。
2025-05-01 10:15:00
604
原创 RAG与微调--本地部署大语言模型在车企OEM的效率提升用途
RAG:灵活、低成本,适合动态知识需求。微调:专精、高性能,适合稳定垂直领域。最佳实践:根据任务复杂度、数据状态和预算权衡,或结合两者优势。
2025-04-28 16:09:30
1201
原创 34个RAG评估框架教你如何评估RAG效果
检索增强生成(RAG)作为一种突破性方法论,通过整合外部知识显著提升了自然语言生成能力。该技术通过和三大核心机制,使大语言模型能够基于权威实时数据生成既符合语境又准确可靠的响应,推动了自然语言处理系统的重大革新。从宏观架构来看,这个融合语言模型与检索技术的复杂系统可划分为两大模块。系统还集成文档分块、向量嵌入、安全验证等上下游环节,整体效能既取决于各组件性能,更依赖于系统级的协同优化。面对如此复杂的系统架构,如何建立兼顾整体与组件的评估体系成为关键课题。三大挑战使得建立统一评估范式成为当前研究前沿。
2025-04-28 15:47:22
732
原创 逆天20w赞!吴恩达+Open AI打造《大模型通关指南》
在这个系列教程中,《PromptEngineering for Developers》针对入门LLM开发者,深入浅出地介绍了如何构建Prompt并利用OpenAI提供的API实现包括总结、推断、转换等多种常用功能,是入门LLM开发的经典教程;LLM(Large Language Models)正在逐步改变人们的生活,对于开发者来说,如何利用LLM提供的API快速、便捷地开发具备更强大能力、集成LLM的应用程序,以实现更新颖、更实用的功能,是一项急需学习的重要技能。
2025-04-25 16:09:15
320
原创 简单30行代码,使用LangChain 搭建专属 GPT知识库
最近,ChatGPT相关的LangChain项目备受瞩目,成了非常火热的开源代码库,并且还在快速发展中!我们都知道,ChatGPT的训练知识库数据集是过时的, 且无法联网,因此,给出的答案或数据常常是不正确的。想像一下,如果我们将本地的知识文档作为prompt,使用ChatGPT根据这些资料中来回答问题,那岂不是很酷, LangChain的出现就能很好地帮我们实现这个需求。
2025-04-21 15:27:19
838
原创 AI大模型应用实战: DeepSeek+RAGflow纯本地化知识库搭建全教程
作者在搭建私有知识库部署ragflow过程中踩了很多坑,在此分享一下本地安装部署经验。话不多说,本文全程干货。
2025-04-21 15:18:33
900
原创 大模型入门神书!从0到1,一本就够了!(无偿分享电子版)
书中详细梳理了 GPT 模型的发展历程,从 GPT-1 到 GPT-4,每个阶段的突破与特点都清晰呈现,让你见证一个超级英雄的成长史。而 API 部分堪称全书精华,详细介绍了 GPT-4 和 ChatGPT 的 API,从基本概念、可用模型,到在 OpenAI Playground 中的实践操作,再到用 Python 库进行开发,每个步骤都有细致讲解和丰富示例。这本书最大的魅力在于,不管你是想在 AI 领域大展身手的开发者,还是对新技术充满好奇的探索者,它都能满足你的需求。大模型开发小白必看!
2025-04-16 15:28:22
212
原创 从零开始搭建 RAG 智能问答系统:一个完整的实战案例|附源码
你是否曾经为处理大量文档而烦恼?是否希望有一个智能助手,能够快速回答你关于文档的任何问题?今天,我将分享一个完整的实战案例,教你如何从零开始搭建一个基于 RAG 技术的智能问答系统。引言还记得上次为了找一个文档中的关键信息,花了整整一个下午翻找的经历吗?或者为了回答客户的问题,不得不反复查阅产品手册的困扰?在信息爆炸的时代,如何高效地管理和利用文档资源,已经成为每个企业和个人都面临的挑战。今天,我要分享一个解决方案:使用 RAG(检索增强生成)技术构建智能问答系统。这个系统不仅能理解你的问题,还能从海量文档
2025-04-14 16:32:08
874
原创 RAG篇「数据集构建」保姆级教程来了!
导读这篇文章是关于如何构建检索增强生成(RAG)模型的向量知识库的保姆级教程,详细介绍了在数据质量、场景匹配、安全合规、文本分块、向量化模型适配、索引结构优化以及问答对构建等方面的注意事项和具体操作方法。检索增强生成(Retrieval Augmented Generation),简称 RAG。在构建RAG(Retrieval-Augmented Generation)的向量知识库时,数据的处理方式直接影响系统的性能和可靠性。不能随意塞入未经处理的数据,否则可能导致检索效果差、生成结果不准确甚至安全隐患。构
2025-04-11 14:55:54
976
原创 一文详解用RAGFlow + Dify搭建高质量AI问数应用
★如何让业务人员摆脱SQL,直接用自然语言获取数据?本文分享一个实用案例:结合RAGFlow与Dify两大开源工具,构建高质量的AI问数应用。
2025-04-10 16:29:01
1379
原创 NLP界大佬Thomas Wolf等新书再次来袭——《Transformer自然语言处理》,466页PDF+代码,免费下载
自2017年推出以来,Transformer已迅速成为在各种自然语言处理任务上实现最先进结果的主导架构。如果你是一名数据科学家或程序员,这本实用的书向你展示了如何使用基于python的深度学习库hugs Face transformer来训练和扩展这些大型模型。Transformers 已经被用来编写真实的新闻故事,改进谷歌搜索查询,甚至创造出讲笑话的聊天机器人。
2025-04-07 14:40:51
645
原创 LangChain实战教程:如何让聊天机器人学会调用搜索工具和网页阅读器?(文末附完整代码)
搜索工具允许AI助手获取最新或专业信息,这些信息可能不在模型的训练数据中。在生产环境中,我们通常会使用Google、Bing或专业API如Tavily。# 配置模拟搜索数据"北京天气": ["title": "北京今日天气预报","content": "北京今天晴朗,气温15-25度,空气质量良好,适合户外活动。",},"title": "北京一周天气预报","content": "本周北京以晴为主,周末可能有小雨,气温适宜。",],"中国首都": ["title": "中国首都简介",
2025-04-07 14:38:10
783
原创 白皮书|《2025年大模型应用落地白皮书:企业AI转型行动指南》(附下载)
🔍 核心观点指出,大模型技术已进入与业务深度融合的阶段,64%的中国企业预计对AI的投资将增长10-30%。同时,要破除落地大模型的思维误区,避免将技术指标等同于商业应用成功的指标,关注长期投入下的价值收益,以及大模型落地对数据资产和数据价值发挥的推动作用。🔍 火山引擎大模型服务助力企业省心AI转型,提供了豆包大模型、火山方舟大模型服务平台、扣子、HiAgent等产品和服务。《2025年大模型应用落地白皮书:企业AI转型行动指南》由火山引擎和IDC联合发布,深入探讨了企业AI转型中大模型技术的应用与落地
2025-04-03 14:40:39
541
原创 阿里研究院:2024大模型训练数据白皮书(附完整PDF下载)
报告进一步阐释了高质量数据的标准和评估方法,揭示了高质量数据在提升模型准确性、稳定性和泛化能力方面的作用。特别地,白皮书提出了合成数据作为解决数据供给不足的创新方案,探讨了合成数据的生成方法、分类及其在提升模型训练效率和安全性方面的潜力。此外,白皮书还涵盖了对大模型训练数据治理的深入思考,包括数据合规性、政府与社会力量的协同合作,以及中美在数据获取和利用方面的现状对比。最后,白皮书提出了促进高质量训练数据供给的建议,鼓励政府和社会力量以更开放和务实的方式合作,共同推动人工智能技术的健康发展和产业创新。
2025-04-03 14:24:14
380
原创 零门槛上手!本地部署Ollama+OpenWebUI+Deepseek-R1操作指南
通过以上步骤,我们成功地在本地环境中部署了 Ollama、Open WebUI 和 Deepseek-R1-14b 模型,并配置了相关的 API 接口。这一过程非常适合希望将 AI 技术应用到本地开发中的开发者。在未来,随着更多模型和功能的加入,Open WebUI 将成为更加强大的 AI 部署平台。
2025-04-03 14:23:12
1172
原创 图解 LangChain Agents,熬了三天三夜只为你实现AI自动化工作流
LangChain Agents 就像是一个智能助手团队,可以帮你把大型语言模型变成能自动完成复杂任务的工作流程。2. 工作流程2. 自定义工具3. 记忆功能2. 集成外部APILangChain Agents库是构建智能工作流的强大工具,可以帮你:掌握了这套框架,你就能构建真正实用的AI应用了!跟传统脚本比起来简直是降维打击,我熬夜写这篇文章就是希望你少走弯路。快去试试吧!大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “”“”等问题热议不断。不如成为,毕竟AI
2025-03-31 21:10:59
1103
原创 图解 LangChain 本地部署,调试到天亮只为你摆脱API依赖
LangChain 就像是一个积木建筑师,可以帮你搭建与大语言模型交互的应用而不必被外部服务束缚。模型获取本地模型加载创建对话链向量存储设置向量存储RAG实现会话式RAG应用部署简易Web界面进程管理注意事项本地模型对硬件有要求,至少8GB内存。小点儿的也行,但可能卡成PPT第一次加载模型慢,别急,没死机。反正你熬夜调试都习惯了持久化存储向量数据库,省得每次重启都重新计算。谁愿意白等呢大文件分批处理,别一次性全塞进去,内存会哭模型体积越大越吃资源,但效果确
2025-03-31 21:08:51
792
原创 2025大模型案例应用分享:中国人工智能系列白皮书 | (附181页PDF文末下载)
1.1 大模型技术的发展历程 …51.2 大模型技术的生态发展 …91.3 大模型技术的风险与挑战 …11。
2025-03-28 11:29:41
1252
原创 零代码搭建本地知识库:基于DeepSeek+RAG+Ollama+Cherry Studio全流程指南
核心价值企业敏感数据100%离线处理个人知识库智能问答本地模型快速响应支持PDF/Word/网页等多格式文档工具链Ollama:开源模型托管平台(支持150+模型):深度求索开源的16K长文本大模型:中文语义向量模型:AI应用可视化客户端本方案在Intel i7-12700H + RTX 4070设备上实测,可流畅处理200页以内的技术文档问答。通过本地化部署既保障了数据安全,又充分发挥了DeepSeek模型的逻辑推理能力。
2025-03-28 11:28:45
1327
原创 Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
兄弟们,今天咱来聊聊一个超有意思的技术组合 ——Spring AI + Ollama 实现 deepseek - r1 的 API 服务和调用。咱都知道,人工智能这几年那可是火得一塌糊涂,各种大模型你方唱罢我登场。deepseek - r1 就是其中一个挺厉害的模型,那怎么把它用起来,让它为咱们的项目服务呢?这就轮到 Spring AI 和 Ollama 闪亮登场啦!Spring AI 呢,它就像是一个超级助手,专门为咱们开发人工智能应用提供各种便利。
2025-03-28 11:23:46
800
原创 如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路
定期总结学习成果,撰写博客、发表文章或分享经验,不仅可以加深对知识的理解,还能提升个人的行业影响力。通过不断输出高质量的内容,你可以在AI领域建立起自己的品牌,吸引更多机会。
2025-03-26 15:36:21
1341
原创 【开源】Dify+RAGFlow强强联合:知识库精准度飙升,PDF表格秒变结构化数据!
1. 深度网页解析能力RAGFlow可解析PDF、扫描件、表格等复杂格式,自动识别布局并提取结构化数据,弥补Dify原生解析短板。\2. 检索质量飞跃通过多路召回、重排序优化策略,RAGFlow显著提升答案准确性。例如,扫描版PDF表格的解析完整度提升40%以上。\3. 混合检索模式Dify支持向量检索、全文检索、混合检索(推荐),结合RAGFlow的API调用,实现“非结构化数据+语义匹配”的双重优势。\1. 部署RAGFlow。
2025-03-26 15:33:57
1102
原创 即使2025年了,RAG也不会被淘汰
RAG(检索增强生成)自从第一个大上下文窗口的LLM(大语言模型)发布以来,就逐渐式微。现实是这样的:即使拥有令人印象深刻的 2M token 上下文窗口,目前的长上下文 LLM 仍然只能处理简单数据集。例如,一个 1M token的上下文窗口大致相当于 1500 页文档。对于演示来说很不错,但对于生产级应用来说仍然不足。但由于“RAG”这个术语似乎如此具有争议,我们可以这样说: 我们不必称之为 RAG。我们可以称其为简单的。
2025-03-26 15:27:33
932
原创 万字长文!手把手带你上手基于LangChain及Qwen大模型的开发与应用
今天来为大家讲述一下这门在DeepLearning.AI上的经典课程——
2025-03-24 11:04:02
807
原创 从零开始打造自己的Manus:学学如何使用 LangChain 快速构建 AI Agent
最近,随着 Manus 的强势出圈,「智能体(Agent)」这一概念一下子占据了人们的视野,成为AI领域最新的流量密码。那么,智能体到底是什么?我们又该如何快速入门打造自己的智能体应用呢?其实,作为大模型开发热门框架的LangChain,就能帮助我们轻松实现这一目标。今天,就让我们从零开始,一起看看如何用LangChain打造一个专属于自己的Agent智能系统吧!
2025-03-24 10:55:47
766
原创 转行大模型,风口预计就这一年,明年市场就饱和了!
尤其是干程序员的,绝对要抓住这个机会,我不是危言耸听,经历过Java、Python、大数据的,都应该知道,每个新技术,风口就那么多年,技术迭代的很快。大模型(Large Models或Big Models)通常指的是参数量达到数十亿甚至千亿级别的人工智能模型,它们具有极强的表达能力和学习能力,能够处理和理解大量的数据。在人工智能领域,大模型通常是指采用深度学习技术的模型,尤其是神经网络模型,这些模型包含大量的神经元和参数,能够捕捉数据中的复杂模式和关系。
2025-03-24 10:27:34
427
原创 DeepSeek+本地知识库,3大主流方案笔记本实操对比
可以明显看出,基于相同的deepseek大模型,使用不同的模型应用工具(包括解析模型),对话时判若两人。AnythingLLM明显思考更简单,回答十分简洁,回答速度很快。deepseek+RAGflow像一个普通的成年人。deepseek+AnythingLLM像一个普通的小学生。
2025-03-22 11:54:39
879
原创 大模型本地部署:DeepSeek+dify 本地知识库:高级应用Agent+工作流
工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。一个完整的工作流,必须具备。
2025-03-22 10:55:34
2124
原创 手把手教你实现Ollama+FastGPT+Deepseek打造个人专属AI知识库!
本文从零实现,基于Ollama、FastGPT、Deepseek在本地环境中打造属于自己的专业知识库,与大家分享~Ollama是一个开源的本地大语言模型运行框架,专为在本地机器上便捷部署和运行大语言模型(LLM)而设计,无需依赖云端服务。它提供简单易用的界面和优化的推理引擎,帮助我们轻松加载、管理和运行各种AI模型。要使用Ollama,首先需要下载并安装它。访问以下链接:找到适合你操作系统的版本进行下载,默认安装即可。这里笔者以Windows系统为例。
2025-03-21 11:04:33
1269
1
原创 Manus到底是什么?看看这份《Manus没有秘密》就知道了!附PDF免费下载!赶紧收藏!
这份ppt可以让不太了解Manus的同学,快速了解manus,搞清楚manus到底是什么,怎么玩!启动合作,目前着力于进一步的Build,而不是跟随舆论热点,发力于商业变现,这其实是好事。Manus虽然暂停了国内的网站,但是一份比较重要的Manus资料这两天却火了。Manus前两天宣布和阿里合作后,热度开始慢慢减下来了。当然重点是给多开放一些邀请码出来,不然普通人还是玩不上。希望能尽快开发完,能给市场带来一个更优秀的版本。
2025-03-21 10:58:39
254
原创 100行代码搞定LLM Agent?!揭秘AI智能体背后的秘密(附代码)
最近啊,这“LLM Agent”(大语言模型智能体)火得不行,到处都能听到。但好多人一说起这玩意儿,就整一堆专业术语,听得人云里雾里的。我就纳闷了,这 Agent 真有那么玄乎?不就是个能干活的 AI 助手嘛!今天,我就来扒一扒它的底裤,用大白话给大家讲讲,这 Agent 到底是怎么回事儿。保证大家看完都能明白,甚至还能自己动手写一个!
2025-03-21 10:53:48
945
原创 我不信看完这篇你还不懂RAG:RAG技术概述
框架名称核心特点优势劣势/局限适用场景UltraRAG动态记忆管理、多模态支持、自适应优化(DDR)、端到端训练支持- 支持多模态数据(文本、图像、空间数据) - 动态更新知识库,响应实时性强 - 性能优化(如DDR策略) - 开源灵活- 需较高计算资源(GPU) - 配置复杂度较高复杂问答、多模态分析、企业知识库(如医疗、金融)中文友好、可视化界面、流式输出、支持离线部署- 中文场景优化 - 开箱即用,易集成 - 支持本地化部署(隐私保护) - 社区活跃。
2025-03-20 14:14:31
914
原创 用 DeepSeek 打造你的超强代码助手
无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
2025-03-20 14:09:15
6640
原创 图RAG统一框架来了,12种RAG方法一网打尽~
这篇文章要解决的问题是如何在统一框架下对基于图的检索增强生成 (RAG) 方法进行系统的比较和分析。现有的基于图的 RAG 方法没有在同一实验设置下进行系统的比较。包括缺乏统一的框架来抽象和比较各种基于图的 RAG 方法;现有工作主要关注整体性能评估而非单个组件的性能;以及缺乏对各种方法在准确性和效率方面的全面比较。涉及 RAG 技术在医疗、金融、教育等领域的广泛应用,以及已有的基于图的 RAG 方法(如 RAPTOR、KGP、HippoRAG 等),但这些方法缺乏系统比较和分析。
2025-03-20 14:03:40
935
原创 100个常用的DeepSeek指令(职场、创意、生产力、个人发展),直接使用
今天给大家准备100个职场和日常生活中实用的DeepSeek提示词,涵盖职场效能、个人创意、生产力提升与个人发展领域。下面帮大家采用分类整理。报告优化:请分析这份报告的逻辑结构并提出改进建议提案重构:请将这份提案按SCQA框架重新组织内容市场调研:请整理过去一年关于…市场的主要变化趋势会议效率:设计一套45分钟高效会议的流程模板和角色分工绩效分析:请将这份员工表现数据转化为四象限评估图表反馈框架:设计一套建设性反馈的STAR模型对话示例谈判准备:为…商务谈判制作利益分析表和BATNA清单。
2025-03-18 16:10:56
774
原创 大模型私有知识库如何提高准确率?切块是关键
在进行RAG(Retrieval-Augmented Generation)任务时,我们仿佛在进行一场精密的开卷考试。在回答问题之前,我们会通过多级检索策略查阅事先准备好的知识库(包含结构化文档、领域论文和实时更新的行业报告),这种动态增强机制不仅能够将答案准确率提升35-50%,还能通过语义关联技术自动生成知识图谱,使输出的答案具备专业深度和横向拓展性。完整的RAG流程包含五个优化层级:知识预处理模块会对原始数据进行清洗和实体标注,采用混合嵌入模型(如BAAI/bge和text2vec)进行向量化编码。
2025-03-18 16:09:29
913
原创 DeepSeek+ragflow构建企业知识库之工作流,突然觉的dify又香了
我们按照下图的数据介绍组件。• ragflow的的官方文档相对来说还是比较欠缺的,特别是用户交互这块。• ragflow的ui使用成本相对比较高,组件不知道返回什么,只能根据示例或意图推断• 使用ragflow建议是有技术底子的• 英文文档的描述习惯和中文还是有很大的差别的说实话,用着有点崩溃,哈哈。
2025-03-17 15:22:57
1245
原创 大模型微调之基础篇:大模型微调概念以及微调框架
在大模型微调领域,存在多种框架,每个框架都有其独特的优势和局限性。下面介绍几种常见的微调框架,包括示例代码和适用模型,帮助你根据任务需求选择最合适的框架。
2025-03-17 15:20:49
1406
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人