★
如何让业务人员摆脱SQL,直接用自然语言获取数据?本文分享一个实用案例:结合RAGFlow与Dify两大开源工具,构建高质量的AI问数应用。
前言
经过3天的验证测试,我发现RAGFlow与Dify产品组合在生成AI问数质量方面展现出了强大潜力。虽然存在一些不足,但RAGFlow成功填补了Dify知识库应用的短板,形成了一个高效互补的解决方案。
从整体逻辑构建来看:
- Dify:擅长快速构建MVP产品原型,其插件系统和自定义工具使构建AI应用变得简单高效
- RAGFlow:贡献两个关键能力: ①提供高质量知识库数据源;②通过NL2SQL功能作为AI问数的专业Agent
整体流程
整体架构图
RAGFlow+Dify实际效果展示
从实际效果来看,这一组合实现的Agent逻辑非常符合预期,能够很好地完成多表关联查询等复杂任务:
1. Agent整体呈现结果
Agent整体呈现结果
2. 复杂分析型查询支持
系统能够理解并处理复杂的分析型查询语句,生成准确的SQL查询并返回有价值的结果:
分析型查询示例1
分析型查询示例2
3. 三段式结果呈现
系统采用了清晰的三段式呈现方式,提升用户体验:
- ① 首先展示SQL查询语句
- ② 然后展示数据结果
- ③ 最后提供总结分析
结果呈现示例
★
小贴士:这种呈现方式让技术人员能够验证SQL正确性,同时也让业务人员直接看到结论,兼顾了不同用户需求。
实现步骤详解
整个实现过程分为几个关键步骤,下面详细说明:
1. Agent的设计架构
Agent作为整个系统的核心能力引擎,分为四个主要部分:
1.1 Agent提示词设计
明确定义Agent的身份定位和工作方法,通过精心设计的提示词引导AI生成高质量查询:
Agent提示词设计
★
关键点:好的提示词设计是高质量SQL生成的基础,需要明确告诉模型应该如何理解数据结构和生成查询。
1.2 知识库接入
系统采用RAGFlow提供的外部知识库,实现步骤如下:
第一步:引入外部知识库API
引入外部知识库API
第二步:接入RAG知识库
接入RAG知识库
1.3 工作流工具集成
Dify将工作流转化为可调用工具,使Agent能够实现自然语言查询:
第一步:构建工作流
构建工作流
第二步:将工作流发布为工具
由于Agent只能通过Function Calling调用工具,需要将工作流发布为可调用的工具:
发布为工具
第三步:优化工具描述
工具描述需要精心设计,帮助LLM准确理解工具功能并正确触发调用:
优化工具描述
★
实用技巧:工具描述是给LLM看的,而非给人看的,需要包含足够信息让模型理解何时以及如何调用该工具。
1.4 RAGFlow Agent集成
将RAGFlow的Agent作为工作流的核心环节,负责高质量SQL生成。RAGFlow Agent接口包含两个部分:
第一步:创建Agent会话
创建Agent会话
第二步:与Agent交互
与Agent交互
2. 自定义API接口开发
为有效管理RAGFlow Agent会话,开发了一个自定义FastAPI接口,实现以下功能:
- 会话管理:确保Dify Agent与RAGFlow Agent会话保持同步,保留上下文记忆
- 对话交互:通过会话与RAGFlow Agent进行对话并获取回复
自定义API接口
★
注意:当前实现仅支持单会话对接RAGFlow Agent,多会话支持需要额外开发。
3. 接口注册与集成
将自定义接口注册到系统中,遵循OpenAPI 3.0规范:
接口注册
★
技术提示:可以让LLM协助生成OpenAPI 3.0规范的接口描述文档,提高开发效率。
4. RAGFlow Agent知识库设计
RAGFlow Agent的核心优势在于其高质量知识库,这也是保证SQL生成质量的关键因素。优质的知识库能提供准确的上下文信息,而低质量的知识库则可能导致误导和错误的SQL生成:
知识库设计
结语
本文简要介绍了RAGFlow与Dify结合实现AI问数的验证方案。限于篇幅,无法详尽展示所有技术细节,有兴趣的读者可通过私信交流,我将尽可能整理更多细节到飞书文档中。
值得注意的是,AI问数仅解决了业务人员的基础取数需求,但业务分析还需要更进一步。未来的发展方向是基于数据指标完成归因分析,包括:
- ✅ 建立归因链路中各指标对应的业务脉络知识库
- ✅ 明确各指标的计算方法
- ✅ 调度Agent进行指标数据检索
- ✅ 完成数据结果的归因诊断
归因分析是一个需要大量企业个性化定制的知识库工程,但方法论是相通的。欢迎有志同道合的朋友一起交流探讨!
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。