在又叒拯救dify知识库之前,我们得先简单了解一下minimax-01。
minimax-01是MiniMax在1月份开源的旗舰大模型(比DeepSeek R1早4天)。
github地址: https://github.com/MiniMax-AI/MiniMax-01
参数量没有DeepSeek R1大(DeepSeek是671b,minimax-01是456b),但是实测各方面能力相差不大(性能同样直追GPT-4o和Claude-3.5-Sonnet)
最最让我惊艳的亮点有两项:
1.价格感人: 原本DeepSeek的API就已经是白菜价了,但是minimax-01的API价格居然比DeepSeek还低(100万tokens仅需1元)。
2.最关键的能力:支持处理400万(4M)tokens的超长上下文(目前全球最长),是Claude-3.5-Sonnet的20倍,GPT-4o的32倍,DeepSeek的62.5倍!这项能力上对其他模型来说是降维打击了。
在400万token的"大海捞针"检索任务中,MiniMax-01全绿!这意味着即使在海量信息中,它也能精准找到关键内容,不会像其他模型一样"记忆力衰退"。
看到这里,部分朋友应该已经大概知道,MiniMax-01为什么能拯救dify的知识库问答效果了。
其实就是靠模型自身的超长上下文"**大海捞针"的能力,在这种情况下,即便不用RAG搭建知识库,直接把所有资料内容放在system prompt**中都能达到良好的问答效果。
PS:但是我们现阶段还是会结合RAG来使用,有两个好处:1.利用RAG的能力缩小内容范围,节约tokens(节约成本)2.当知识库内容超出模型支持上下文长度时,还是需要借助RAG缩小范围。
加上kimi支持的上下文长度还不够,所以在当时结合kimi的这个方案并不适合大多数人,土豪可以当我没说。
但是现在出现了一个上下文长度是kimi的30倍,价格是kimi的60分之一,性能还直逼gpt-4o和Claude3.5的开源模型,就大不一样了。
好了,介绍差不多了,我们开始实操~
MiniMax-01拯救dify知识库
顺便提一下,dify在两天前又更新到了v1.1.0版本
修复了不少bug,还增强了一些功能
最大的更新是新增了元数据功能,感兴趣的朋友可以去看dify官方blog:
https://dify.ai/blog/dify-v1-1-0-filtering-knowledge-retrieval-with-customized-metadata
说明一下:不用升级dify也能往下操作
要把minimax-01接入dify,我们还是老规矩,需要获取minimax-01的apikey
apikey创建地址:
https://platform.minimaxi.com/user-center/basicinformation/interface-key
创建好apikey,复制备用
接下来访问dify页面
点击右上角头像->设置
在模型供应商中,找到MiniMax,点击安装
PS:模型供应商安装是从github拉取,最好开启科学上网,不过我实测没有科学上网的情况下,多试几次也能成功安装
弹框如下图,就代表安装成功了
刷新一下页面,点击MiniMax的设置
如下图,需要填写MiniMax的apikey和Group id,然后保存
group id在账户信息这里获取
保存成功后,展开模型,MiniMax-Text-01就是上面所说的minimax-01模型的全称。
这套方案还有另外一个关键点:RAG检索到的相关内容,需要尽可能全面、丰富,就算当中有不太相关的信息也没关系,只要相关信息都在就行。
我还是以我的公众号文章搭建知识库为例。
采用的策略非常简单粗暴:直接一个chunk(块)放一整篇文章,这样完全不需要担心检索到的内容出现不连贯的问题。
dify中刚好有一个父子分块的方式能够在父块中存放整篇文章。
我们先新建一个知识库,导入公众号文章的txt文件,并进入下一步
分段设置选择【父子分段】父块设置为全文,子块不用填分段标识符,分段最大长度直接上最大4000tokens
索引方式选择高质量-混合索引,索引模型和重排模型我选择硅基流动里面的两个免费模型。
topK拉满,score阈值拉到0.1(这是最省事的配置),如果你还是心疼消耗的tokens,可以自行调整参数。点击保存并处理,然后等待文件解析
等待所有文件状态变成可用,就ok了
接下来我们创建一个应用,把这个知识库关联到应用上。
并指定使用MiniMax-Text-01模型
测试一下问答效果:
AUTUMN
这个回答,可以说堪称完美!即全面又详细。
经常看我文章的朋友应该知道,我每次测试知识库问答效果,基本上都是用这套公众号文章作为资料,而这个问题也是知识库的试金石。
我用这个问题测试过fastgpt、ragflow、coze、dify、等等其他一推带知识库的LLM应用平台。
但是说实话,到目前为止,用这套方案,得到的回答是最优秀的。
我测试了很多问题,回答的都很棒,都是既全面、又详细,而且minimax-01有自己的一套逻辑来总结表达,不是照搬原文。
AUTUMN
可能有人会觉得,这个方案下,换一个模型效果是不是也一样呢。
还真不太一样,比如下图,我用DeepSeek V3,它在这个问题上就产生了幻觉,我上传的文档中只有kimi、智谱、gpt4o接入微信的文章,而它把其他文章中提到的大模型都列出来了。。。
所以,大模型的上下文长度以及"大海捞针"的能力其实是非常重要的。
就像人一样,领导给你一件任务,如果你能了解整个任务背景,各种详细信息,上下文非常充足的情况下,相信会执行的很容易。相反,当你上下文不足,做起来就会束手束脚,各种错误,效率低下。
所以,当你给大模型指派一个任务时,能给到足够丰富的上下文,那么结果都一定不会差。
而当这个上下文非常庞大的时候,minimax-01的400万tokens上下文就能发挥它的最大作用了。
最关键的还是它价格太香了,100万tokens才1元,意味着处理几百万字才几块钱,随便造~
用它来续写小说效果也非常棒,在上篇文章中,我把辰东最新的小说(还未连载完)《夜无疆》丢给MiniMax-01(共108万字),让它续写,续写出来的内容是文风一致,情节合理,我估计原作者看到都会恍惚吧。
以及非常适合应用到 AI Agent:想象一下,当AI需要处理复杂任务时,往往需要长时间的"思考链",需要持续记忆大量信息。无论是单Agent系统需要持续记忆,还是多Agent系统中Agent之间的大量相互通信,都需要越来越长的上下文支持。
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。