机器学习数学基础(偏差方差、最大似然估计、贝叶斯统计、MAP)

目录

偏差方差

一致性

最大似然估计

贝叶斯统计

最大后验概率


如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~

偏差方差

偏差的定义如下:

\textup{bias}(\hat{\theta}_m)=\mathbb{E}(\hat{\theta}_m)-\theta

如果 \textup{bias}(\hat{\theta}_m)=0 ,那么估计量被称为无偏估计

如果 \lim_{m\rightarrow \infty}\textup{bias}(\hat{\theta}_m)=0 ,那么估计量被称为渐进无偏

偏差度量偏差真实函数或参数的误差期望。

方差度量数据上任意采样可能导致的估计期望的偏差。

如下图所示(图源:深度学习):

随着容量增加,偏差逐渐减

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值