自然语言处理之语音识别:Julius:语音识别基础理论
语音识别概览
语音识别的历史与发展
语音识别技术,自20世纪50年代以来,经历了从简单的数字识别到复杂自然语言处理的演变。起初,IBM开发了“Audrey”系统,能够识别10个英文数字,标志着语音识别技术的开端。随着计算机技术的进步,特别是信号处理和机器学习算法的发展,语音识别的准确率和应用范围显著提升。
早期技术
- 模板匹配:通过比较输入语音与预存的语音模板,找到最匹配的模板进行识别。
- 基于规则的方法:使用语言学规则和语法结构来识别语音,但灵活性和准确性有限。
现代技术
- 隐马尔可夫模型(HMM):结合统计学和概率论,用于识别连续语音流,是现代语音识别系统的核心。
- 深度学习:近年来,深度神经网络(DNN)和循环神经网络(RNN)的引入,极大地提高了语