自然语言处理之命名实体识别:Bi-LSTM-CRF详解
自然语言处理之命名实体识别:Bi-LSTM-CRF
1. 命名实体识别简介
1.1 NER的基本概念
命名实体识别(Named Entity Recognition,简称NER)是自然语言处理(NLP)领域的一个重要任务,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。这些实体在文本中往往具有特定的上下文意义,是信息抽取、问答系统、机器翻译等任务的基础。
1.2 NER的应用场景
命名实体识别在多个场景中发挥着关键作用:
- 信息检索与抽取:帮助搜索引擎理解查询意图,从大量文档中抽取关键信息。
- 智能问答系统:理解问题中的实体,提供更精准的答案。