Solution:
观察数据范围发现点数和边数比较小,n,m≤3000n, m\leq 3000n,m≤3000,但是询问数比较多。
所以考虑把询问离线下来,然后暴力枚举每一个点,O(nm)O(nm)O(nm) 去更新答案。
数组含义:
假设我们当前正在更新从 rootrootroot 这个点开始的答案:
q[root][y][i][{k,id}]q[root][y][i][\{k, id\}]q[root][y][i][{k,id}]:表示 xxx 到 yyy 的路径上的第 iii 个问题问 xxx 到 yyy 的第 kkk 个点是啥,ididid 为离线后原询问的下标
ans[i]ans[i]ans[i]:表示第 iii 个询问的答案
vis2[i]vis2[i]vis2[i]:表示这个点的是否有被更新过答案,如果被更新过,则不能再次更新(字典序最小)
vis1[i]vis1[i]vis1[i]:表示这个点是否在搜索树上(是否被走过),如果是,那么说明形成了环,反之不成环。
cnt[i]cnt[i]cnt[i]:表示 iii 是多少个环的起始点
特别的, tmptmptmp 表示当前环的个数。
算法过程:
枚举路径初始点 rootrootroot ,做一遍 dfsdfsdfs
假设当前我们搜索到节点 yyy , 有如下三种情况:
- vis2[y]=1vis2[y] = 1vis2[y]=1 , 说明当前节点有字典序更小的路径可以到达这个点,所以直接跳过即可
- vis2[y]=0vis2[y] = 0vis2[y]=0 && vis1[y]=0vis1[y] = 0vis1[y]=0, 说明当前点 yyy 没有被访问过,继续dfsdfsdfs
- vis2[y]=0vis2[y] = 0vis2[y]=0 && vis1[y]=1vis1[y] = 1vis1[y]=1, 重点来了, 因为vis1[y]=1vis1[y]=1vis1[y]=1, 说明形成了环,因此需要将环上的点以及环所能到达的点都赋成 −1-1−1 ,如果暴力去枚举环上的点并标记 −1-1−1, 其实比较难写。这里我记录环的个数(tmp)(tmp)(tmp)以及环的起始点, 在 dfsdfsdfs 的过程中,如果 tmp>0tmp>0tmp>0 ,那么说明当前点是在环上,在枚举出边的时候直接讲答案赋成 −1-1−1,反之就直接更新答案
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 3001, M = 4e5 + 7;
int n, m, k;
int ans[M] = {};
vector < pair <int , int> > q[N][N];
vector < int > a[N];
int qq[N], top = 0;
int tmp = 0;
bool vis1[N], vis2[N] = {};
int root = 0;
int cnt[N] = {};
void dfs(int x) {
qq[++ top] = x;
if (!tmp) {
for (int i = 0; i < q[root][x].size(); i ++) {
int kk = q[root][x][i].first;
int id = q[root][x][i].second;
if (kk <= top) ans[id] = qq[kk];
}
}
for (int i = 0; i < a[x].size(); i ++) {
int y = a[x][i];
if (vis2[y]) continue;
if (!vis1[y]) vis1[y] = 1, dfs(y);
else ++ tmp, cnt[y] ++;
}
-- top;
tmp -= cnt[x]; //接下来回溯,因此不在以x为起始的环上了,所以要减去cnt[x]
cnt[x] = 0;
vis2[x] = 1;
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i ++) {
int x, y;
scanf("%d %d", &x, &y);
a[x].push_back(y);
}
for (int i = 1; i <= n; i ++) sort(a[i].begin(), a[i].end());
for (int i = 1; i <= k; i ++) {
int x, y, z;
scanf("%d %d %d", &x, &y, &z);
q[x][y].push_back(pair <int, int>{z, i});
ans[i] = -1;
}
for (int i = 1; i <= n; i ++) {
tmp = 0, root = i, top = 0;
for (int j = 1; j <= n; j ++) vis1[j] = vis2[j] = 0;
dfs(i);
}
for (int i = 1; i <= k; i ++) printf("%d\n", ans[i]);
return 0;
}