【zrjx】SR无敌【题解】

该博客讨论了如何使用最少的翻转操作来实现序列的循环右移k次。作者分析了不同k值(如1, n-1, 0, 2, n-2)的情况,并给出了对应的翻转策略。对于特殊情况,如k=0且n=2,需要特别注意输出结果。最后,提供了实现这一操作的代码示例。" 109850711,8348231,Windows 10 安装Docker教程,"['Docker', 'Windows开发', '虚拟化', 'Hyper-V', '系统配置']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

无敌的SRSRSR现在有一个排列 1,2,…,n1,2,…,n1,2,,n。现在他想把这个序列循环右移 kkk次,即这个序列的后kkk个移动到前kkk个。如 1,2,3,4,51,2,3,4,51,2,3,4,5 右移222 次变成4,5,1,2,34,5,1,2,34,5,1,2,3

然而无敌的SRSRSR不会直接进行移位操作,他会进行的操作是“翻转”操作,即选择 lllrrr 并把位置lllrrr 的数字翻转。如 1,2,3,4,51,2,3,4,51,2,3,4,5 翻转(2,4)(2,4)(2,4) 变成 1,4,3,2,51,4,3,2,51,4,3,2,5

现在他给了你 nnnkkk ,让你算至少要多少次翻转操作才能实现循环右移 kkk 次,并且给出方案,即每次分别选择的 lllrrr

分析:

咋一看有点难,但是很快发现是一道结论题,当然,在考场上我没有分析完全,只有50分。。。

  • k=1k = 1k=1的时候,可以通过222步来完成转换,第一次1...n−11...n-11...n1翻转,第二次1...n1...n1...n翻转
    同理, 当k=n−1k = n-1k=n1时,也可以通过222步来完成转换,第一次2...n2...n2...n翻转,第二次1...n1...n1...n翻转
  • k=0k = 0k=0 时,显然,输出000即可。
  • k=2k = 2k=2时(本题第一个坑点), 这也可以用222步来完成转换,第一次1...n−11...n-11...n1翻转,第二次2...n2...n2...n翻转
    同理, 当k=n−2k = n-2k=n2时,也可以通过222步来完成转换,第一次2...n2...n2...n翻转,第二次1...n−11...n-11...n1翻转。
    但是,当k=0且n=2时,应该输出0,而不是2及操作(本题第二个坑点)
  • 剩余的情况,则需要333步来完成翻转,第一次1...n−k1...n-k1...nk,第二次1...n1...n1...n翻转,第三次1...k1...k1...k翻转。

代码如下:

#include <bits/stdc++.h>
using namespace std;

const int N = 1001;
int a[N];
int n, k;

int main() {
	scanf("%d%d",&n,&k);
	if (k == n-2) {
		if (k == 0) {
			cout<<0;
			return 0;
		}
		printf("2\n");
		cout<<2<<' '<<n<<endl;
		cout<<1<<' '<<n-1<<endl;
	}
	else if (k == 2) {
		cout<<2<<endl;
		cout<<1<<' '<<n-1<<endl;
		cout<<2<<' '<<n<<endl;
	}
	else if (k == 1) {
		printf("2\n");
		printf("1 %d\n",n-1);
		printf("1 %d\n",n);
	}
	else if (k == n-1) {
		cout<<2<<endl;
		cout<<2<<' '<<n<<endl;
		cout<<1<<' '<<n<<endl;
	}
	else if (k == 0) {
		cout<<0<<endl;
	}
	else {
		printf("3\n");
		printf("1 %d\n",n-k);
		printf("1 %d\n",n);
		printf("1 %d\n",k);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值