Spark DataSource API V2

本文对比分析了Spark1.3的DataSourceV1API与Spark2.3的DataSourceV2API,详细介绍了两种API的实现方式及优缺点。V1API便于使用,但存在局限性,如依赖上层API、难以添加新优化算子等;V2API克服了这些问题,提供了更灵活的数据源定制方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark 1.3 引入了第一版的数据源 API,我们可以使用它将常见的数据格式整合到 Spark SQL 中。但是,随着 Spark 的不断发展,这一 API 也体现出了其局限性,故而 Spark 团队不得不加入越来越多的专有代码来编写数据源,以获得更好的性能。Spark 2.3 中,新一版的数据源 API 初见雏形,它克服了上一版 API 的种种问题,原来的数据源代码也在逐步重写。本文将演示这两版 API 的使用方法,比较它们的不同之处,以及新版 API 的优势在哪里。

DataSource V1 API

V1 API 由一系列的抽象类和接口组成,它们位于 spark/sql/sources/interfaces.scala 文件中。主要的内容有:

trait RelationProvider {
  def createRelation(sqlContext: SQLContext, parameters: Map[String, String]): BaseRelation
}

abstract class BaseRelation {
  def sqlContext: SQLContext
  def schema: StructType
}

trait TableScan {
  def buildScan(): RDD[Row]
}

通过实现 RelationProvider 接口,表明该类是一种新定义的数据源,可以供 Spark SQL 取数所用。传入 createRelation 方法的参数可以用来做初始化,如文件路径、权限信息等。BaseRelation 抽象类则用来定义数据源的表结构,它的来源可以是数据库、Parquet 文件等外部系统,也可以直接由用户指定。该类还必须实现某个 Scan 接口,Spark 会调用 buildScan 方法来获取数据源的 RDD,我们将在下文看到。

JdbcSourceV1

下面我们来使用 V1 API 实现一个通过 JDBC 读取数据库的自定义数据源。为简单起见,表结构信息是直接写死在代码里的,我们先从整表扫描开始。完整的代码可以在 GitHub(链接)中找到,数据源表则可以在这个 链接 中查看。

class JdbcSourceV1 extends RelationProvider {
  override def createRelation(parameters: Map[String, String]): BaseRelation = {
    new JdbcRelationV1(parameters("url"))
  }
}

class JdbcRelationV1(url: String) extends BaseRelation with TableScan {
  override def schema: StructType = StructType(Seq(
    StructField("id", IntegerType),
    StructField("emp_name", StringType)
  ))

  override def buildScan(): RDD[Row] = new JdbcRDD(url)
}

class JdbcRDD(url: String) extends RDD[Row] {
  override def compute(): Iterator[Row] = {
    val conn = DriverManager.getConnection(url)
    val stmt = conn.prepareStatement("SELECT * FROM employee")
    val rs = stmt.executeQuery()

    new Iterator[Row] {
      def hasNext: Boolean = rs.next()
      def next: Row = Row(rs.getInt("id"), rs.getString("emp_name"))
    }
  }
}

JdbcRDD#compute 负责实际的读取操作,它从上游获取到数据库连接信息、选取的字段、以及过滤条件,拼装 SQL 后执行,并返回一个 Row 类型的迭代器对象,每一行数据的结构和请求的字段列表相符。定义好数据源后,我们就可以用 DataFrame 对象来直接操作了:

val df = spark.read
  .format("JdbcSourceV2")
  .option("url", "jdbc:mysql://localhost/spark")
  .load()

df.printSchema()
df.show()

上述代码输出的内容是:

root
 |-- id: integer (nullable = true)
 |-- emp_name: string (nullable = true)
 |-- dep_name: string (nullable = true)
 |-- salary: decimal(7,2) (nullable = true)
 |-- age: decimal(3,0) (nullable = true)

+---+--------+----------+-------+---+
| id|emp_name|  dep_name| salary|age|
+---+--------+----------+-------+---+
|  1| Matthew|Management|4500.00| 55|
|  2|  Olivia|Management|4400.00| 61|
|  3|   Grace|Management|4000.00| 42|
|  4|     Jim|Production|3700.00| 35|
|  5|   Alice|Production|3500.00| 24|
+---+--------+----------+-------+---+

V1 API 的局限性

我们可以看到,V1 API 使用起来非常方便,因此能够满足 Spark SQL 初期的需求,但也不免存在很多局限性:

依赖上层 API

createRelation 接收 SQLContext 作为参数;buildScan 方法返回的是 RDD[Row] 类型;而在实现写操作时,insert 方法会直接接收 DataFrame 类型的参数:

trait InsertableRelation {
  def insert(data: DataFrame, overwrite: Boolean): Unit
}

这些类型都属于较为上层的 Spark API,其中某些类已经发生了变化,如 SQLContext 已被 SparkSession 取代,而 DataFrame 也改为了 Dataset[Row] 类型的一个别称。这些改变不应该体现到底层的数据源 API 中。

难以添加新的优化算子

除了上文中的 TableScan 接口,V1 API 还提供了 PrunedScan 接口,用来裁剪不需要的字段;PrunedFilteredScan 接口则可以将过滤条件下推到数据源中。在 JdbcSourceV1 示例中,这类下推优化会体现在 SQL 语句里:

class JdbcRelationV1 extends BaseRelation with PrunedFilteredScan {
  def buildScan(requiredColumns: Array[String], filters: Array[Filter]) = {
    new JdbcRDD(requiredColumns, filters)
  }
}

class JdbcRDD(columns: Array[String], filters: Array[Filter]) {
  def compute() = {
    val wheres = filters.flatMap {
      case EqualTo(attribute, value) => Some(s"$attribute = '$value'")
      case _ => None
    }
    val sql = s"SELECT ${columns.mkString(", ")} FROM employee WHERE ${wheres.mkString(" AND ")}"
  }
}

如果我们想添加新的优化算子(如 LIMIT 子句),就不免要引入一系列的 Scan 接口组合:

trait LimitedScan {
  def buildScan(limit: Int): RDD[Row]
}

trait PrunedLimitedScan {
  def buildScan(requiredColumns: Array[String], limit: Int): RDD[Row]
}

trait PrunedFilteredLimitedScan {
  def buildScan(requiredColumns: Array[String], filters: Array[Filter], limit: Int): RDD[Row]
}
难以传递分区信息

对于支持数据分区的数据源,如 HDFS、Kafka 等,V1 API 没有提供原生的支持,因而也不能利用数据局部性(Data Locality)。我们需要自己继承 RDD 来实现,比如下面的代码就对 Kafka 数据源进行了分区,并告知 Spark 可以将数据读取操作放入 Kafka Broker 所在的服务器上执行,以提升效率:

case class KafkaPartition(partitionId: Int, leaderHost: String) extends Partition {
  def index: Int = partitionId
}

class KafkaRDD(sc: SparkContext) extends RDD[Row](sc, Nil) {
  def getPartitions: Array[Partition] = Array(
    // populate with Kafka PartitionInfo
    KafkaPartition(0, "broker_0"),
    KafkaPartition(1, "broker_1")
  )

  override def getPreferredLocations(split: Partition): Seq[String] = Seq(
    split.asInstanceOf[KafkaPartition].leaderHost
  )
}

此外,类似 Cassandra 这样的数据库,会按主键对数据进行分片。那么,如果查询语句中包含了按该主键进行分组的子句,Spark 就可以省去一次 Shuffle 操作。这在 V1 API 中也是不支持的,而 V2 API 则提供了 SupportsReportPartitioning 接口来支持。

缺少事务性的写操作

Spark 任务是有可能失败的,使用 V1 API 时就会留下部分写入的数据。当然,对于 HDFS 这样的文件系统来说问题不大,因为可以用 _SUCCESS 来标记该次写操作是否执行成功。但这一逻辑也需要最终用户来实现,而 V2 API 则提供了明确的接口来支持事务性的写操作。

缺少列存储和流式计算支持

Spark SQL 目前已支持列存储和流式计算,但两者都不是用 V1 API 实现的。ParquetFileFormatKafkaSource 等类型都使用了专有代码和内部 API。这些特性也在 V2 API 中得到支持。

DataSource V2 API

V2 API 首先使用了一个标记性的 DataSourceV2 接口,实现了该接口的类还必须实现 ReadSupportWriteSupport,用来表示自身支持读或写操作。ReadSupport 接口中的方法会被用来创建 DataSourceReader 类,同时接收到初始化参数;该类继而创建 DataReaderFactoryDataReader 类,后者负责真正的读操作,接口中定义的方法和迭代器类似。此外,DataSourceReader 还可以实现各类 Support 接口,表明自己支持某些优化下推操作,如裁剪字段、过滤条件等。WriteSupport API 的层级结构与之类似。这些接口都是用 Java 语言编写,以获得更好的交互支持。

public interface DataSourceV2 {}

public interface ReadSupport extends DataSourceV2 {
  DataSourceReader createReader(DataSourceOptions options);
}

public interface DataSourceReader {
  StructType readSchema();
  List<DataReaderFactory<Row>> createDataReaderFactories();
}

public interface SupportsPushDownRequiredColumns extends DataSourceReader {
  void pruneColumns(StructType requiredSchema);
}

public interface DataReaderFactory<T> {
  DataReader<T> createDataReader();
}

public interface DataReader<T> extends Closeable {
  boolean next();
  T get();
}

可能你会注意到,DataSourceReader#createDataReaderFactories 仍然捆绑了 Row 类型,这是因为目前 V2 API 只支持 Row 类型的返回值,且这套 API 仍处于进化状态(Evolving)。

JdbcSourceV2

让我们使用 V2 API 来重写 JDBC 数据源。下面是一个整表扫描的示例,完整代码可以在 GitHub(链接)上查看。

class JdbcDataSourceReader extends DataSourceReader {
  def readSchema = StructType(Seq(
    StructField("id", IntegerType),
    StructField("emp_name", StringType)
  ))

  def createDataReaderFactories() = {
    Seq(new JdbcDataReaderFactory(url)).asJava
  }
}

class JdbcDataReader(url: String) extends DataReader[Row] {
  private var conn: Connection = null
  private var rs: ResultSet = null

  def next() = {
    if (rs == null) {
      conn = DriverManager.getConnection(url)
      val stmt = conn.prepareStatement("SELECT * FROM employee")
      rs = stmt.executeQuery()
    }
    rs.next()
  }

  def get() = Row(rs.getInt("id"), rs.getString("emp_name"))
}
裁剪字段

通过实现 SupportsPushDownRequiredColumns 接口,Spark 会调用其 pruneColumns 方法,传入用户所指定的字段列表(StructType),DataSourceReader 可以将该信息传给 DataReader 使用。

class JdbcDataSourceReader with SupportsPushDownRequiredColumns {
  var requiredSchema = JdbcSourceV2.schema
  def pruneColumns(requiredSchema: StructType)  = {
    this.requiredSchema = requiredSchema
  }

  def createDataReaderFactories() = {
    val columns = requiredSchema.fields.map(_.name)
    Seq(new JdbcDataReaderFactory(columns)).asJava
  }
}

我们可以用 df.explain(true) 来验证执行计划。例如,SELECT emp_name, age FROM employee 语句的执行计划在优化前后是这样的:

== Analyzed Logical Plan ==
emp_name: string, age: decimal(3,0)
Project [emp_name#1, age#4]
+- SubqueryAlias employee
   +- DataSourceV2Relation [id#0, emp_name#1, dep_name#2, salary#3, age#4], datasource.JdbcDataSourceReader@15ceeb42

== Optimized Logical Plan ==
Project [emp_name#1, age#4]
+- DataSourceV2Relation [emp_name#1, age#4], datasource.JdbcDataSourceReader@15ceeb42

可以看到,字段裁剪被反映到了数据源中。如果我们将实际执行的 SQL 语句打印出来,也能看到字段裁剪下推的结果。

过滤条件

类似的,实现 SupportsPushDownFilters 接口可以将过滤条件下推到数据源中:

class JdbcDataSourceReader with SupportsPushDownFilters {
  var filters = Array.empty[Filter]
  var wheres = Array.empty[String]

  def pushFilters(filters: Array[Filter]) = {
    val supported = ListBuffer.empty[Filter]
    val unsupported = ListBuffer.empty[Filter]
    val wheres = ListBuffer.empty[String]

    filters.foreach {
      case filter: EqualTo => {
        supported += filter
        wheres += s"${filter.attribute} = '${filter.value}'"
      }
      case filter => unsupported += filter
    }

    this.filters = supported.toArray
    this.wheres = wheres.toArray
    unsupported.toArray
  }

  def pushedFilters = filters

  def createDataReaderFactories() = {
    Seq(new JdbcDataReaderFactory(wheres)).asJava
  }
}
多分区支持

createDataReaderFactories 返回的是列表类型,每个读取器都会产生一个 RDD 分区。如果我们想开启多个读取任务,就可以生成多个读取器工厂,并为每个读取器限定主键范围:

def createDataReaderFactories() = {
  Seq((1, 6), (7, 11)).map { case (minId, maxId) =>
    val partition = s"id BETWEEN $minId AND $maxId"
    new JdbcDataReaderFactory(partition)
  }.asJava
}

事务性的写操作

V2 API 提供了两组 commit / abort 方法,用来实现事务性的写操作:

public interface DataSourceWriter {
  void commit(WriterCommitMessage[] messages);
  void abort(WriterCommitMessage[] messages);
}

public interface DataWriter<T> {
  void write(T record) throws IOException;
  WriterCommitMessage commit() throws IOException;
  void abort() throws IOException;
}

DataSourceWriter 在 Spark Driver 中执行,DataWriter 则运行在其他节点的 Spark Executor 上。当 DataWriter 成功执行了写操作,就会将提交信息传递给 Driver;当 DataSourceWriter 收集到了所有写任务的提交信息,就会执行最终的提交操作。如果某个写任务失败了,它的 abort 方法会得到执行;如果经过多轮重试后仍然失败,则所有写任务的 abort 方法都会被调用,进行数据清理操作。

列存储与流式计算支持

这两个特性仍处于实验性阶段,在 Spark 中还没有得到使用。简单来说,DataSourceReader 类可以实现 SupportsScanColumnarBatch 接口来声明自己会返回 ColumnarBatch 对象,这个对象是 Spark 内部用来存放列式数据的。对于流式数据,则有 MicroBatchReaderContinuousReader 这两个接口,感兴趣的读者可以到 Spark 单元测试 代码中查看。

参考资料

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值