零知识证明:数论变换NTT

文章介绍了NTT(NumberTheoreticTransform)如何利用原根的性质,避免复数运算,实现FFT(快速傅里叶变换)的优化。在NTT中,原根替代了FFT中的单位根,当p-1能被N整除时,能够进行高效的并行计算。NTT的关键步骤包括特定的指数运算和蝴蝶变换,适用于大规模数据的快速处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)NTT的表示

对于 ,若 的值互不相同,则称g为p的原根。

FFT利用单位根 的性质实现分治优化多项式乘法,原根也有类似性质。NTT利用原根代替FFT的 。这样可以不用复数实现FFT运算。

设g是p的原根,令 ,其中要求 p-1 能被N整除,则有:

NTT的原根表示法可写为:

(2)蝴蝶变换

(3) NTT 并行算法

主要步骤:

### 零知识证明实现步骤详解 #### 1. 定义问题陈述 为了构建零知识证明系统,首先要定义想要证明的具体命题。这通常涉及两个实体:证明者(Prover)和验证者(Verifier)。证明者的目的是说服验证者某项声明是真的,而不泄露任何额外的信息。 对于复杂的计算或逻辑断言,可以通过将原始问题转换成多项式形式来进行处理[^2]。例如,在某些情况下,可以将待证的算术表达式转化为相应的多项式关系 \( P(x) = T(x) \times H(x) \),从而简化后续操作。 #### 2. 构建电路表示 一旦明确了要解决的问题,则需创建一个布尔或算术电路来描述该过程中的每一步骤。此阶段的目标是建立一组输入变量到输出结果之间的映射规则,以便能够准确反映所讨论的实际场景。 在这个过程中可能会涉及到各种类型的门(gates), 如加法门、乘法门等, 这些构成了整个系统的底层结构基础. #### 3. 转化为R1CS约束体系 接下来要把上述得到的电路进一步抽象为线性代数的形式——即所谓的Rank-One Constraint System (R1CS)[^3]. R1CS本质上是一系列由三个向量组成的三元组(a,b,c),满足条件a·b=c。这种表述方式非常适合用来捕捉程序执行路径上的各个节点间的关系,并且易于被之后用于生成具体的证明材料。 #### 4. 应用QAP变换 有了基于R1CS框架下的模型后,下一步就是对其进行Quadratic Arithmetic Program(QAP) 变换。这一环节主要是为了让原本离散化的逻辑连接变得更加平滑连续,便于后期采用更高效的算法完成实际求解工作。具体来说,就是找到一条合适的曲线以及相应参数集,使得所有可能存在的合法状态都能在这条曲线上找到对应位置;非法的状态则无法匹配上任何一个有效坐标点。 #### 5. 执行NTT/FFT预处理 当完成了从高级编程语言层面直到低级数学对象层次的一系列转变之后,便进入了数值分析领域内的核心部分—快速傅里叶变换(Fast Fourier Transform, FFT) 或其有限域版本 — 数论变换(Number Theoretic Transform, NTT)[^4]。这些技术手段可以帮助加速大规模矩阵运算的速度,尤其是在面对高次幂函数时表现尤为突出。通过选取适当模数p及其对应的原根g作为基底,可以在不损失精度的前提下显著提升效率。 #### 6. 创建并发送证明 最后一步便是正式构造出完整的零知识证明并向对方展示出来。此时不仅包含了之前提到过的那些经过精心设计的数据结构,还包括了一些随机掩码(masking bits) 来增强安全性。接收端收到这份文档以后就可以按照既定流程逐一核验各项指标是否达标,直至得出结论为止。 ```python def generate_proof(circuit_inputs): # Step 1: Define problem statement and convert it into polynomial form. # Step 2: Build circuit representation based on the defined logic gates. # Step 3: Convert to R1CS constraints system # Step 4: Apply QAP transformation # Step 5: Perform NTT or FFT preprocessing as needed # Step 6: Create proof with necessary randomness added for security purposes return final_proof_document ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值