筛法求素数

1:普通筛法

筛去所有素数的倍数。

代码:

#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define ll long long
#define maxn 1000003
int vis[maxn];
int prime[maxn];
void prime1()//求出所有素数 
{
	prime[1]=1;
	prime[0]=1;
	for(int i=2;i<=sqrt(maxn);i++)
	{
		if(!prime[i])
		for(int j=i*2;j<=maxn;j+=i)
		{
			prime[j]=1;//筛去i的倍数,最后将所有数的倍数 筛去。 
		}
	}
}
int main()
{
	ll t,n;
	memset(prime,0,sizeof(prime));
	prime1();
    for(int i=0;i<=100;i++)
    {
    	if(!prime[i])
    	{
    		cout<<i<<endl;
		}
	}
}

 

2:欧拉筛法

欧拉筛法与上面的方法比较,它筛的倍数,而且,避免了重复筛除。

代码:

#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define ll long long
#define maxn 1000003
int vis[maxn];
int ans[maxn];
int prime[maxn];
void prime1()//求出所有素数 
{
	prime[1]=1;
	prime[0]=1;
	int t=0;
	for(int i=2;i<=maxn;i++)
	{
		    if(!prime[i])
			ans[t++]=i;
			for(int j=0;j<t&&ans[j]*i<=maxn;j++)
			{
				prime[i*ans[j]]=1;//素数的prime[]的值是0 
				
				if(i%ans[j]==0)//这两句话的意思是,如果i%ans[j]==0,又因为i=ans[j]*?,则i*ans[j+1]=ans[j]*?*ans[j+1],那么
				//ans[j+1]一定能被另一个数筛去,就不必重复,越往后数越多,会浪费时间 
				break;
			}
	}
}
int main()
{
	ll t,n;
	memset(prime,0,sizeof(prime));
	prime1();
	for(int i=0;i<100;i++)
	cout<<ans[i]<<endl;	
}

第一种,输出的是100以内的素数

第二种输出的是前100个素数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值