LeetCode 322 零钱兑换

该博客详细解析了LeetCode 322题——零钱兑换的解决方案。介绍了动态规划的自底向上和自顶向下两种方法,并分析了各自的复杂度。此外,还探讨了通过添加记忆数组进行优化的空间换时间策略,以及结合贪心和深度优先搜索(DFS)的剪枝技巧。每种方法都伴随着复杂度的分析,以帮助理解不同策略的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3 
解释: 11 = 5 + 5 + 1
示例 2:

输入: coins = [2], amount = 3
输出: -1

思路 动态规划,自底向上

首先,如何去考虑动态规划,怎么将这个问题拆分为重复的子问题
然后,定义dp状态方程
dp[i] =min( dp[i - cins[j]] )+ 1

class Solution {
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        int max = amount + 1; //dp数组初始化最大值
        Arrays.fill(dp, max);
        dp[0] = 0;
       for (int i = 1; i <= amount; i++) {
            for (int j = 0; j < coins.length; j++) { //循环硬币面额数组,找到最小值
                if (coins[j] <= i) {
                    dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }
}

复杂度分析

时间复杂度:O(SN),总金额S,coins数组大小N
空间复杂度:O(S)

思路二 动态规划,自顶向下

这个类似于之前的斐波拉契系数一样,递归的思想是自顶向下,斐波拉契系数是将后面f(n-1)和f(n-2)相加,而这道题的思想是 对下面coins数组进行循环,找最小的数再加一
f(n) = min(f(n - coins[j] ))+ 1

class Solution {
    int res = Integer.MAX_VALUE;
    public int coinChange(int[] coins, int amount) {
        if (coins.length == 0 || amount == 0) return -1;
        dfs(coins, amount, 0);
        return res == Integer.MAX_VALUE ? -1 : res;
    }

    public void dfs (int[] coins, int amount, int count) {
        if (amount < 0) return;//凑不了amount金额,啥也不干,跳过
        if (amount == 0) res = Math.min(res, count); //凑到了,选择最小的数量
        for (int i = 0; i < coins.length; i++) {
            dfs (coins, amount - coins[i], count + 1);
        }
    }  
}
class Solution {
    public int coinChange(int[] coins, int amount) {
        if (coins.length == 0 ) return -1;
        return dfs(coins, amount);
    }

    public int dfs (int[] coins, int amount) {
        if (amount < 0) return -1;
        if (amount == 0) return 0;
        int min = Integer.MAX_VALUE;
        for (int i = 0; i < coins.length; i++) {
            int res = dfs (coins, amount - coins[i]);
            if (res >= 0 && res < min) {
                min = res + 1;
            }
        }
        return min == Integer.MAX_VALUE ? -1 : min;
    }  
}

复杂度分析

时间复杂度:O(NS)
空间复杂度:O(S),最坏情况下,S的递归深度

优化,添加记忆数组

每一次求金额的最小情况,都有很多重复计算,使用一个额外数组进行记忆,以空间换时间

class Solution {
    public int coinChange(int[] coins, int amount) {
        if (coins.length == 0 ) return -1;
        return dfs(coins, amount, new int[amount]);
    }

    public int dfs (int[] coins, int amount, int[] count) {
        if (amount < 0) return -1;
        if (amount == 0) return 0;
        if (count[amount - 1] != 0) return count[amount - 1];
        int min = Integer.MAX_VALUE;
        for (int i = 0; i < coins.length; i++) {
            int res = dfs (coins, amount - coins[i], count);
            if (res >= 0 && res < min - 1) { //找到res最小的那个情况
                min = res + 1;
            } 
        }
        count[amount -1] = (min == Integer.MAX_VALUE ? -1 : min);
        return count[amount - 1];
    }  
}

复杂度分析

时间复杂度O(SN)
空间复杂度:O(S)

贪心加dfs

从面值小的 开始进行找最小值一般情况非常慢,我们从大面值硬币开始找
每一次都取最大硬币的 最大币数,这样一般情况会得到接近于解的值,但是不一定是解。我们可以通过这个解 对递归树进行疯狂剪枝

  • 找最大值硬币的 最大数 带入进去,一步一步进行凑,如果凑不到金额,那么回溯 之前的大硬币的数量,进行减一。 这样类似于穷举的方法,但是 通过一开始得到的解可以排除大部分情况,除非奇葩情况。
 int ans = Integer.MAX_VALUE;

    public int coinChange(int[] coins, int amount) {
        Arrays.sort(coins);
        coinChange(coins.length-1, coins, 0, amount);
        return ans == Integer.MAX_VALUE ? -1 : ans;
    }

    private void coinChange(int index, int[] coins, int count, int needAmount) { 
    //index进行最大面值硬币, count 当前这层的币数  needAmount 金额减去的余额
        if (needAmount == 0) {
            ans = Math.min(count, ans);
            return;
        }
        if (index < 0) {
            return;
        }

        int i = needAmount / coins[index];//最大面值硬币 的最大币数
        for (int k = i; k >= 0 && count + k < ans; k--) { //count + k 进行剪枝
            coinChange(index-1, coins, count+k, needAmount-k*coins[index]);
        }
    }

复杂度分析

时间复杂度O(Sn),但是 这个递归树进行疯狂剪枝
空间复杂度:O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值