题目
在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。
一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, …, C_k 组成:
相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角)
C_1 位于 (0, 0)(即,值为 grid[0][0])
C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1])
如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0)
返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。
解法
实际上就是使用BFS进行 广度优先搜索。找到最短的路径
同时还有动态规划的相关思想
class Solution {
private static int[][] directions = {{0,1}, {0, -1}, {1, -1}, {1, 0}, {1, 1}, {-1, -1}, {-1, 0}, {-1, 1}};
private int row, col;
public int shortestPathBinaryMatrix(int[][] grid) {
row = grid.length;
col = grid[0].length;
if(grid[0][0] == 1 || grid[row - 1][col - 1] == 1) return -1;
Queue<int[] > queue = new LinkedList<>();
queue.offer(new int[] {0,0}); //这里队列中放的是一个2长度的数组,用来存放当前位置的x,y坐标
grid[0][0] = 1; //grid数组本来是放0或1,用来表示空或者阻塞,然后当是可以走的时候,
//将当前位置赋值,表示为从左上角到当前位置的最短路径。用来记录最短路径的。
//这里起点,所以最短路径为1.
while (!queue.isEmpty() && grid[row-1][col-1] == 0) { //队列不为空,且终点是空的
int[] temp = queue.remove();
int preLength = grid[temp[0]][temp[1]]; //记录当前位置的最短路径
for (int i = 0; i < 8; i++) { //八个方位的循环
int newX = temp[0] + directions[i][0];
int newY = temp[1] + directions[i][1];
if (inGrid(newX, newY) && grid[newX][newY] == 0) { //如果走的位置不出界且 能走且是没有被访问过
queue.offer(new int[] {newX,newY});
grid[newX][newY] = preLength + 1; //下一个位置的最短路径
}
}
}
return grid[row-1][col-1] != 0 ? grid[row-1][col-1] : -1;
}
public boolean inGrid (int x, int y) { //判断xy是否出界
if (x >= 0 && x < row && y >= 0 && y < col) return true;
return false;
}
}
复杂度分析
时间复杂度为O(n),因为每个元素遍历了一次,n为元素的个数。
空间复杂度为O(k),k为过程中队列的最大元素个数。
优化
这里的队列还是先进先出的,但是我们可以改为是优先队列。将最为可能是最短路径的走法先出队。可以提高速度。但是本质上,还是要将所有位置 都需要进队的。只是出队的时候通过优先级来出队。