高斯混合模型(Gaussian Mixture Model,GMM)聚类算法(python实现)

原理:

  1. 目标:将样本集合划分为 K 个高斯分布所表示的聚类,每个聚类对应一个高斯分布。
  2. 初始化:随机选择 K 个高斯分布作为初始聚类的参数。
  3. 迭代优化:重复以下步骤,直到收敛:
    • E 步骤(Expectation):根据当前的高斯分布参数,计算每个样本属于每个高斯分布的后验概率。
    • M 步骤(Maximization):基于样本的后验概率,重新估计每个高斯分布的参数(均值和协方差)。
  4. 收敛条件:当参数不再发生变化,或者变化很小,算法收敛。

数学公式:

  1. 高斯分布表示:假设第 k 个高斯分布的参数为 𝜃𝑘=(𝜇𝑘,Σ𝑘)),其中 𝜇𝑘是均值向量,Σ𝑘是协方差矩阵。
  2. 样本属于高斯分布的后验概率:对于样本 x^{(i)},它属于第 k 个高斯分布的后验概率为: p\left ( z^{(i)} = k|x^{(i)},\theta \right ) = \frac{\pi _{k}\mathbb{N}(x^{(i)}|\mu _{k},\sum k)}{\sum_{j=1}^{K}\pi _{j}\mathbb{N}(x^{(i)}|\mu _{j},\sum j)} 其中:
    • \pi _{k}​ 是第 k 个高斯分布的先验概率(混合系数),满足 \sum_{k=1}^{K}\pi _{k} = 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值