MapReduce计算的强隐私实现 M2R:Enabling Stronger Privacy in MapReduce Computation (USENIX2015)

​​在公有云或者私有云中防止内部用户(如,充满好奇心的管理员)偷窃数据是一个非常重要安全担心。为了阻止内部用户威胁,通常的做法是对云上存储的数据进行加密。但是,即使数据被加密,仍然存在访问模式泄露问题。例如,攻击者将观测到的加密数据流动情况与公开数据集关联,能够推断出加密数据所对应的明文信息。

1.两方面攻击:

Passive Attack:观察数据流动推断原始信息

Active Attack:篡改数据破坏计算

 

2.Baseline Systems泄露两个方面的信息:

a)IO-Profile :计算单元的输入规模、输出规模和处理时间

本文暂不考虑该种泄露。

b)Shuffle-Profile:计算单元之间的数据流


3.研究动机

a)阻止(shuffle)计算过程中加密数据的访问模式泄露,即map算子的输出元组经过group操作,发送给reduce算子作为输入,中间group操作泄露了元组之间的关系。这种泄露可以是WordCount计算中不同文档中共有的单词或者特有的单词,也可以是PageRank计算中整个图的结构;

4. 解决方案

a)  针对shuffle计算的泄露问题,主要设计目标是隐藏map输出与reduce输入的映射关系;

b)  shuffle过程本质上是一个通信过程,通信领域已经有匿名化通信的研究成果——mixing network。M2R将secure shuffle问题转换为secure mixing network问题。

c)  map算子的输出元组进入mixing network中的mixT算子,decryption(解密),permute(重排列),使用概率加密方式re-encryption(再加密),输出。然后再经过多轮mixT算子进行,解密,重排列,再加密,增强安全性。最终使得MixT算子两端的数据失去对应关系。鉴于概率加密主要特点——相同信息经过几次加密,产生不同的密文,group计算需要在trusted环境下计算,M2R在mixing network最后一轮mix时,将加密方式修改为确定性加密(一个明文只对应一个密文),就可以在untrusted环境下进行group计算。

d)  M2R提供计算完整性验证,收集每个算子的统计信息,在下一个算子计算时进行验证。

5. 评价与贡献

M2R通过mixing network实现了secure shuffle,阻止shuffle过程映射关系的泄露。

6.缺点和争议

a)  未考虑其它基于内存的访问模式泄露;

b)  数据类型只支持数值型,离散型不支持。

7. 遗留问题

a)对不同计算单元mapT、reduceT、mixT和groupT各自所使用的秘钥没有介绍清楚。​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型发展与战略研究中心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值