多光谱(RGB-T)行人检测、语义分割研究汇总

本文聚焦于多光谱(RGB-T)语义分割与行人检测的最新研究,深入解析了截至2020年初的代表性深度学习模型。探讨了MFNet、RTFNet等语义分割算法及多光谱行人检测的挑战与突破。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当前的研究目标转向多光谱(RGB-T)语义分割和行人检测任务,我将对近些年使用深度学习算法设计的模型进行详细分析。以下为截止到2020年初已公开发表的论文目录。这两个领域的相关论文很少,主要原因还是数据获取和对齐的难度较大以及有效的多模态融合算法设计难度较大,两种模态间的信息差异性较大,因此使用简单融合方法的效果比较差。多光谱语义分割和行人检测都是目前只有两个数据集,之后会在论文详解中进行介绍。

1.RGB-T语义分割:
(1)MFNet: Towards Real-Time Semantic Segmentation for Autonomous Vehicles with Multi-Spectral Scenes(第一篇多光谱语义分割论文,也提出了目前仅有的两个数据集中的一个)
(2)RTFNet: RGB-Thermal Fusion Network for Semantic Segmentation of Urban Scenes(2019年目前效果最好的)
(3)PST900: RGB-Thermal Calibration, Dataset and Segmentation Network(第二个数据集)

2.RGB-T行人检测
1.Multispectral Deep Neural Networks for Pedestrian Detection(BMVC2016)
2.Multi-spectral Pedestrian Detection Based on Accumulated Object Proposal with Fully Convolutional Networks(ICPR2016)
3.Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks(ESANN2016)
4.Learning Cross-Modal Deep Representations for Robust Pedestrian Detection(CVPR2017)
5.FullyConvolutionalRegionProposalNetworks forMultispectralPersonDetection(CVPR workshop2017)

更新中

### RGB-T语义分割算法的实现方法与相关资源 RGB-T语义分割是一种结合可见光(RGB)和热成像(T)数据进行场景理解的技术,近年来在自动驾驶、监控等领域受到广泛关注。以下是对RGB-T语义分割算法的实现方法及相关资源的详细介绍。 #### 1. 算法概述 RGB-T语义分割的核心在于多模态信息融合[^1]。通过结合RGB图像提供的纹理、颜色信息和热成像图提供的温度分布信息,可以显著提升分割精度。例如,MFNet是最早提出的针对多光谱场景的实时语义分割网络之一,它为后续研究奠定了基础[^1]。而RTFNet则是在2019年提出的效果最好的RGB-T语义分割模型,其通过设计特定的特征融合模块实现了对复杂场景的有效分割[^1]。 #### 2. 数据集 目前主流的RGB-T语义分割数据集包括: - **MFNet数据集**:由MFNet论文提出,包含多光谱场景下的标注数据。 - **PST900数据集**:另一个重要的RGB-T数据集,提供了更丰富的场景多样性[^1]。 #### 3. 实现方法 以下是实现RGB-T语义分割的主要步骤和技术要点: ##### (1)多模态特征提取 - 使用双分支网络分别提取RGB图像和热成像图的特征。例如,可以采用ResNet或MobileNet作为基础骨干网络。 - 对于深度信息不准确的问题,可以参考RGB-D语义分割中的解决方案[^2],通过引入注意力机制或自适应对齐模块来缓解噪声影响。 ##### (2)特征融合策略 - **早期融合**:将RGB和T通道直接拼接后输入网络,简单但可能丢失细节信息。 - **晚期融合**:分别处理两种模态的数据后再进行融合,适合捕捉高层次语义信息。 - **多层次融合**:结合跳跃连接的思想,在不同层次上融合RGB和T特征,如RTFNet中使用的跨层特征聚合模块[^1]。 ##### (3)边缘优化 为了提高分割结果的边缘精确性,可以借鉴超像素边缘优化技术[^3]。通过引入空洞卷积和多层次特征融合模块,增强对细节区域的关注。此外,利用超像素划分方法对预分割结果进行优化,能够进一步改善边界模糊问题。 #### 4. 示例代码 以下是一个基于PyTorch的简单RGB-T语义分割框架示例: ```python import torch import torch.nn as nn class RGBTFusionNet(nn.Module): def __init__(self, num_classes): super(RGBTFusionNet, self).__init__() # RGB分支 self.rgb_encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, padding=1) ) # T分支 self.t_encoder = nn.Sequential( nn.Conv2d(1, 64, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, padding=1) ) # 融合模块 self.fusion = nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(), nn.Conv2d(128, num_classes, kernel_size=1) ) def forward(self, rgb, t): rgb_feat = self.rgb_encoder(rgb) t_feat = self.t_encoder(t) fused = torch.cat([rgb_feat, t_feat], dim=1) output = self.fusion(fused) return output # 测试模型 model = RGBTFusionNet(num_classes=20) rgb_input = torch.randn(1, 3, 256, 256) t_input = torch.randn(1, 1, 256, 256) output = model(rgb_input, t_input) print(output.shape) # 输出尺寸应为 [1, 20, 256, 256] ``` #### 5. 相关论文与代码资源 - **MFNet**:提出了首个RGB-T语义分割网络及相应数据集。 - **RTFNet**:效果最优的RGB-T语义分割模型,代码可在GitHub上找到[^1]。 - **PST900**:提供了第二个重要的RGB-T数据集及其对应的分割网络[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值