关于线激光扫描关键点提取的总结zg

1.简介:由于深度学习,需要训练大量图片数据,不想采用深度学习方法。
故采用传统图像处理算法+数学计算实现kuka机器人的V形坡口焊缝寻位
1.通过串口与激光通信控制打开关闭
2.通过网口与相机进行连接
3.通过网口与kuka机器人进行连接,通信协议为Ethernet KRL
听上去很简单,实际工作量很大,主要包括:
1.线激光光平面标定
2.线激光与机器人手眼标定
3.图像处理:图像预处理,激光中心线提取,关键点检测,坡口特征计算。
以上工作原理在各大博主的文章中已讲述的很明白,本质上就是如下流程:
图像坐标系下关键点的像素坐标—>相机坐标系下的三维坐标—>机器人焊枪坐标系下三维坐标—>机器人基坐标系下三维坐标
难点01:由于坡口需要打磨,导致金属表面反光,如下图:导致关键点难以识别
在这里插入图片描述
解决思路:由粗到细:先记录一下大体过程,以后有空补全:
0.预处理及中心线提取(较为成熟)
1.先根据像素点获取大致位置,j1\j2\i1\i2,从而确定ROI及判断是否为有效的坡口;
2.分割四个部分:左上、左下、右上、右下;
3.拟合各个部分,获取拟合线(需去除反光部分的此处需要不断优化);
4.计算交点:上部两个交点较为简单,下部两个边缘点较为复杂,需要优化。

(挖坑以后补充)
在这里插入图片描述

在这里插入图片描述

经过不断优化算法适应性还是很不错的。
如果有做类似图像处理工作的大佬,欢迎留言,一块交流,共同进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值