分享思路:Python+Spark招聘爬虫可视化系统 招聘数据分析 Hadoop职位可视化 大数据毕业设计 51job数据分析(可选加推荐算法)

该博客介绍了一个基于Hadoop、HDFS、Spark和SpringBoot的大数据招聘信息分析系统。使用MySQL存储数据,Echarts进行数据可视化。系统包括爬虫、数据清洗、分析和前端展示功能,可进行二次开发,如添加推荐算法。数据处理流程涉及Hive清洗、HDFS存储、Spark并行计算,最终在前端以图表形式展示给用户。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开发技术

Hadoop、HDFS、Spark、SpringBoot、echarts、PySpark、Python、MySQL

创新点

大数据架构、爬虫、数据可视化

啰里啰嗦

适合大数据毕业设计、数据分析、爬虫类计算机毕业设计

可二次开发选加推荐算法(协同过滤算法等或者调用SparkML库)

数据处理流程

本环节主要讲述的是对于整体项目功能的设计,设计方案为主要是由大数据系统以及可视化前端子系统组成。在可视化前端子系统中主要是采用了Springboot框架,mybatis框架,因为其去繁就简的特点,很容易创建一个独立的产品级应用,在可视化阶段采用Echarts来提供可交互的直观数据可视化图表。本系统采用的数据库是MySQL数据库,其目的是用来存储利用爬虫爬取到的大量招聘信息数据集和数据处理之后的分析结果。大数据系统中主要是对招聘信息数据集通过使用Hive进行数据清洗,然后再导入Hadoop HDFS中分布存储。在通过Spark并行计算进行数据抽取,多维分析,查询统计等操作来完成数据分析部分。在前端子系统中的数据明细查询功能中读取到MySQL数据库中的数据分析结果,最后生成Echarts图表展示给用户,大数据招聘信息智能分析平台的工作流程如下图所示。

 运行截图

 

 

 

### BOSS直聘大数据岗位数据可视化分析系统的开发方案 #### 1. 系统概述 本系统旨在通过对BOSS直聘网站的大数据岗位招聘信息进行采集、处理和分析,利用Python编程语言及其生态系统中的工具和技术栈来构建一个高效的数据可视化平台。该平台不仅能够帮助求职者更好地理解市场需求,还能为企业提供有价值的招聘策略参考。 #### 2. 技术栈选择 - **Web框架**: 使用Flask作为后端服务器框架[^1]。 - **前端展示**: 利用Echarts库创建动态且交互性强的图表用于数据可视化。 - **自动化抓取**: Selenium被用来模拟浏览器行为从而获取网页上的结构化信息;BeautifulSoup负责解析HTML文档提取所需字段[^2]。 - **数据存储与管理**: 可考虑采用MongoDB这样的NoSQL数据库保存非关系型数据模型下的大量半结构化的网络爬虫所得资料。 - **分布式计算环境搭建**(可选): 如果涉及更大规模的数据集,则可以引入Hadoop集群配合Spark引擎来进行高效的批处理作业[^3]。 #### 3. 功能模块设计 ##### 数据收集层 通过编写定制化的Selenium脚本来周期性访问目标页面并下载最新的职位列表及相关详情页链接地址。随后运用正则表达式匹配算法或者XPath查询语句定位到具体的条目节点完成初步的信息抽取工作。 ```python from selenium import webdriver import re driver = webdriver.Chrome() url = "https://www.zhipin.com/job_detail/?query=大数据&city=101010100" driver.get(url) job_elements = driver.find_elements_by_class_name('info-primary') for element in job_elements: title = element.find_element_by_tag_name('a').text.strip() # 获取职位名称 salary_range = re.findall(r'\d+',element.text)[0:2] # 提取出工资范围内的数值部分 print(f"{title}: {salary_range}") ``` ##### 数据预处理器件 对于原始记录中存在的噪声干扰项(如多余的空白字符)、不一致之处(例如日期格式差异)以及缺失值等问题均需以修正完善。此外还需定义统一的标准编码体系以便于后期关联操作更便捷顺畅。 ##### 统计分析组件 围绕着行业分类、地域分布、经验年限等多个角度展开探索性的描述统计学研究,并据此绘制出相应的图形表示法供决策制定过程中参阅借鉴。 ##### 用户接口单元 除了基本的身份认证机制外还应入权限控制逻辑防止非法入侵事件发生。同时也要注重UI/UX方面的优化使得整体体验更为友好舒适。 #### 4. 关键挑战及解决方案 - 如何应对反爬措施?可以通过设置合理的请求间隔时间、更换User-Agent头文件等方式降低触发频率。 - 怎样保证长期稳定运行?定期更新依赖包版本号保持兼容性良好状态的同时建立完善的日志监控报警体系及时发现潜在风险隐患。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值