Spark SQL
一、Spark SQL架构
-
能够直接访问现存的Hive数据
-
提供JDBC/ODBC接口供第三方工具借助Spark进行数据处理
-
提供更高层级的接口方便处理数据
-
支持多种操作方式:SQL、API编程
- API编程:Spark SQL基于SQL开发了一套SQL语句的算子,名称和标准的SQL语句相似
-
支持Parquet、CSV、JSON、RDBMS、Hive、HBase等多种外部数据源。(掌握多种数据读取方式)
-
Spark SQL核心:是RDD+Schema(算子+表结构),为了更方便我们操作,会将RDD+Schema发给DataFrame
-
数据回灌:用于将处理和清洗后的数据回写到Hive中,以供后续分析和使用。
-
BI Tools:主要用于数据呈现。
-
Spark Application:开发人员使用Spark Application编写数据处理和分析逻辑,这些应用可以用不同的编程语言编写,比如Python、Scala、Java等。
二、Spark SQL运行原理
- Catalyst优化器的运行流程:
- Frontend(前端)
- 输入:用户可以通过SQL查询或DataFrame API来输入数据处理逻辑。
- Unresolved Logical Plan(未解析的逻辑计划):输入的SQL查询或DataFrame转换操作会首先被转换为一个未解析的逻辑计划,这个计划包含了用户请求的所有操作,但其中的表名和列名等可能尚未解析。
- Catalyst Optimizer(Catalyst优化器) Catalyst优化器是Spark SQL的核心组件,它负责将逻辑计划转换为物理执行计划,并进行优化。Catalyst优化器包括以下几个阶段:
- Analysis(分析):将未解析的逻辑计划中的表名和列名解析为具体的元数据,这一步依赖于Catalog(元数据存储)。输出是一个解析后的逻辑计划。
- Logical Optimization(逻辑优化):对解析后的逻辑计划进行各种优化,如投影剪切、过滤下推等。优化后的逻辑计划更加高效。
- Physical Planning(物理计划):将优化后的逻辑计划转换为一个或多个物理执行计划。每个物理计划都代表了一种可能的执行方式。
- Cost Model(成本模型):评估不同物理计划的执行成本,选择代价最低的物理计划作为最终的物理计划。
- Backend(后端)
- Code Generation(代码生成):将选择的物理计划转换为可以在Spark上执行的RDD操作。这一步会生成实际的执行代码。
- RDDs:最终生成的RDD操作被执行,以完成用户请求的数据处理任务。
- 一个SQL查询在Spark SQL中的优化流程
SELECT name FROM(
SELECT id, name FROM people
) p
WHERE p.id = 1
- Filter下压:将Filter操作推到更靠近数据源的位置,以减少不必要的数据处理。
- 合并Projection:减少不必要的列选择
- IndexLookup return:name:如果存在索引,可以直接通过索引查找并返回
name
列
三、Spark SQL API
-
SparkContext:Spark应用的主入口,代表了与Spark集群的连接。
-
SQLContext:Spark SQL的编程入口,使用SQLContext可以运行SQL查询、加载数据源和创建DataFrame。
-
HiveContext:SQLContext的一个子集,可以执行HiveQL查询,并且可以访问Hive元数据和UDF。
-
SparkSession:Spark2.0后推荐使用,合并了SQLContext和HiveContext,提供了与Spark所有功能交互的单一入口点。
创建一个SparkSession就包含了一个SparkContext。
-
若同时需要创建SparkContext和SparkSession,必须先创建SparkContext再创建SparkSession。否则,会抛出如下异常,提示重复创建SparkContext:
详细解释
创建SparkSession的代码
val conf: SparkConf = new SparkConf()
.setMaster("local[4]")
.setAppName("SparkSql")
def main(args: Array[String]): Unit = {
SparkSession.builder()
.config(conf)
.getOrCreate()
}
优化:减少创建代码,SparkSessionBuilder工具类
package com.ybg
import org.apache.spark.{
SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession
// 封装SparkSession的创建方法
class SparkSessionBuilder(master:String,appName:String){
lazy val config:SparkConf = {
new SparkConf()
.setMaster(master)
.setAppName(appName)
}
lazy val spark:SparkSession = {
SparkSession.builder()
.config(config)
.getOrCreate()
}
lazy val sc:SparkContext = {
spark.sparkContext
}
def stop(): Unit = {
if (null != spark) {
spark.stop()
}
}
}
object SparkSessionBuilder {
def apply(master: String, appName: String): SparkSessionBuilder = new SparkSessionBuilder(master, appName)
}
四、Spark SQL依赖
pom.xml
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<spark.version>3.1.2</spark.version>
<spark.scala.version>2.12</spark.scala.version>
<hadoop.version>3.1.3</hadoop.version>
<mysql.version>8.0.33</mysql.version>
<hive.version>3.1.2</hive.version>
<hbase.version>2.3.5</hbase.version>
<jackson.version>2.10.0</jackson.version>
</properties>
<dependencies>
<!-- spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
若出现如下异常:
Caused by: com.fasterxml.jackson.databind.JsonMappingException:
Scala module 2.10.0 requires Jackson Databind version >= 2.10.0 and < 2.11.0
追加如下依赖:
-->
<!-- jackson-databind -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.10.0</version>
</dependency>
<!-- mysql -->
<dependency>
<groupId>com.mysql</groupId>
<artifactId>mysql-connector-j</artifactId>
<version>${mysql.version}</version>
</dependency>
</dependencies>
log4j.properties
log4j.properties应该放在资源包下。
log4j.rootLogger=ERROR, stdout, logfile # 设置可显示的信息等级
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=log/spark_first.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
五、Spark SQL数据集
1、DataSet
- 简介:
- 从Spark 1.6开始引入的新的抽象。
- 是特定领域对象中的强类型集合。
- 可以使用函数式编程或SQL查询进行操作。
- 等于RDD + Schema。
2、DataFrame
- 简介:
- DataFrame是特殊的DataSet:
DataFrame=DataSet[Row]
,行对象的集合,每一行就是一个行对象。 - 类似于传统数据的二维表格。
- DataFrame是特殊的DataSet:
- 特性:
- Schema:在RDD基础上增加了Schema,描述数据结构信息
- 嵌套数据类型:支持
struct
,map
,array
等嵌套数据类型。 - API:提供类似SQL的操作接口。
详细解释
创建DataSet的代码
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
// 提供了一组隐式转换,这些转换允许将Scala的本地集合类型(如Seq、Array、List等)转换为Spark的DataSet。
import spark.implicits._
val dsPhone: Dataset[Product] = spark.createDataset(Seq(
Product(1, "Huawei Mate60", 5888.0f),
Product(2, "IPhone", 5666.0f),
Product(3, "OPPO"<