什么是提示词工程,有哪些开源项目

在这里插入图片描述

提示词工程(Prompt Engineering)是一门专注于优化和开发提示词的技术,旨在提高人工智能模型(如大型语言模型LLM)的性能和用户体验。提示词工程涉及设计、优化和应用提示词,以帮助用户更好地与AI模型交互,提升任务完成效率和质量。以下是一些开源提示词工程项目的详细介绍:

  1. LangGPT
    LangGPT是由云中江于2023年5月开源的提示词工程工具,全称为“Language For GPT”。该项目通过结构化和模板化的方法,帮助用户编写高质量的AI提示词。LangGPT的特点包括降低学习门槛、提高效率,并已被百度、智谱、字节跳动等国内主流大模型平台广泛应用。此外,LangGPT还发展成为一个高质量提示词工程师学习交流社群,吸引了大量用户参与。

  2. PromptPerfect
    PromptPerfect是一款专业工具,旨在优化GPT-4、ChatGPT等主流AI模型的提示词。它支持自动优化、批量优化和API部署,能够将初步提示词转化为更专业、全面的提示词,从而提升生成效果。

  3. BlackFriday-GPTs-Prompts
    这是一个免费的GPT提示词资源库,由用户friuns2创建和维护。项目包含大量免费GPT提示词,覆盖编程、营销、学术、求职等多个领域。用户可以通过GitHub页面浏览、分类或搜索复制提示词,适用于初学者和AI爱好者。

  4. Prompt Range™(PromptRange)
    PromptRange是一个构建服务于提示词工程的生态系统的项目,包含提示词调优工具库、提示词靶场平台以及基于移动互联网和微信的外部终端接入。该项目旨在为用户提供一个可扩展的开源生态系统。

### 开源提示词模板资源 对于生成式 AI 或自然语言处理 (NLP) 项目中的提示词模板,可以考虑以下 GitHub 和 GitLab 上的开源项目: #### 提示词模板的相关开源项目 1. **Prompt Engineering Playbook**: 这是一个专注于提示工程的最佳实践指南和案例集合。它提供了多种场景下的提示词设计模式以及实际应用示例[^3]。 - 地址: https://github.com/dair-ai/Prompt_Engineering_Playbook 2. **Awesome ChatGPT Prompts**: 此仓库收集了大量的高质量提示语句,适用于不同的 NLP 应用领域,例如写作辅助、编程帮助等。这些提示经过社区验证并不断更新[^4]。 - 地址: https://github.com/f/awesome-chatgpt-prompts 3. **LangChain Community Examples**: LangChain 是一个流行的框架,支持构建复杂的对话系统。其官方文档和社区贡献部分包含了丰富的提示模板实例,适合开发者学习借鉴[^5]。 - 地址: https://github.com/langchain-ai/langchain/tree/master/examples 4. **NLPrep**: NLPrep 是一个面向中文用户的预训练模型工具包,其中也包含了一些针对特定任务优化过的提示模板,特别是涉及跨文化适配的内容[^6]。 - 地址: https://github.com/NLPC-NPU/NLPrep 以下是获取上述资源的一个简单 Python 脚本,可以帮助批量爬取指定关键词相关的存储库链接: ```python import requests def search_github_repos(query): url = f"https://api.github.com/search/repositories?q={query}" response = requests.get(url) if response.status_code == 200: data = response.json() repos = [] for item in data['items']: repo_info = { 'name': item['full_name'], 'description': item['description'] or "No description provided", 'url': item['html_url'] } repos.append(repo_info) return repos else: raise Exception(f"Error fetching repositories: {response.text}") if __name__ == "__main__": query = input("Enter your search term:") results = search_github_repos(query) print("\nSearch Results:\n") for idx, result in enumerate(results[:5], start=1): # Display top five matches only. print(f"{idx}. Name: {result['name']} \tDescription:{result['description']} URL:[{result['url']}]") ``` 此脚本通过调用 GitHub API 实现自动化检索功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值