什么是深度神经网络

深度神经网络(DNN)详细介绍

1. 定义与核心原理

深度神经网络(Deep Neural Network, DNN)是一种具有多个隐藏层的人工神经网络模型,其核心在于通过层次化的非线性变换逐步提取输入数据的高层次抽象特征。与浅层神经网络相比,DNN的隐藏层数量通常超过三层,例如VGGNet、ResNet等经典模型的层数可达数十甚至上百层。这种深度结构赋予其更强的表达能力,能够以更少的神经元实现复杂功能的建模。

核心原理

  • 分层特征学习:每一隐藏层对输入数据进行非线性映射,逐步从低级特征(如边缘、纹理)提取到高级语义特征(如物体形状、语义类别)。
  • 表示学习:DNN通过自主学习数据的内在表示,减少对人工特征工程的依赖。例如,卷积神经网络(CNN)通过卷积核自动提取图像的空间特征。
  • 通用近似定理:理论上,三层神经网络即可逼近任何连续函数,但深度网络在实践中的效率和泛化能力更优。

发展历程

  • 2006年,Geoffrey Hinton提出基于受限玻尔兹曼机(RBM)的预训练方法,解决了深度网络训练难题,标志着深度学习的复兴。
  • 2012年,AlexNet在ImageNet竞赛中取得突破,验证了深度卷积网络的优越性。
  • 后续的ResNet引入残差学习,使网络深度突破千层成为可能,进一步推动了模型性能的提升。

2. 典型结构组成

DNN主要由以下三层构成:

  1. 输入层:接收原始数据(如图像像素、文本词向量),每个节点对应一个特征维度。例如,一张224×224的彩色图像输入层节点数为224×224
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值