上海计算机学会2020年7月月赛C++乙组T1跑步

该博客介绍了如何在一场跑步比赛中,通过动态规划策略最大化每段路程的得分。比赛分为n段,每段有不同的得分,选手可以选择跑步、突击或慢走。通过递推算法,可以确定最佳得分路径,确保总分最大化。在给定的样例中,当n=4且得分分别为1, 2, 3, 4时,通过合理选择跑步和突击,最终得分可达14分。" 139442660,4958065,YOLOv8优化:Ghost层的应用与优势,"['YOLOv8', 'GhostNet', '目标检测模型', '神经网络架构', '轻量化']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

小爱在参加一个跑步比赛,比赛路线分为 n 段,其中第 i 段的分数为 ai​。在每段路上,小爱可以选择跑步、突击或慢走,每种方式得分不同,具体规则如下:

  • 如果在一段路上选择跑步,可以得 ai​分;
  • 如果在一段路上选择突击,分数会加倍,变成 2*ai​ 分,但下一段路就只能慢走了;
  • 如果在一段路慢走,得分为 0。

小爱在每段路上应该如何选择,才能使得分之和最大呢?

输入格式

第一行:单个整数 n。
第二行:n 个整数表示 a1​ 到 an​。

输出格式

单个整数:表示答案。

数据范围

  • 对于 30% 的数据,1≤n≤100;
  • 对于 60% 的数据,1≤n≤1000;
  • 对于 100% 的数据,1≤n≤100000;1≤ai​≤10000。

样例数据

 输入:
4
1 2 3 4
输出:
14
说明:
前几段都正常跑步,最后一段突击,得分为1+2+3+4*2

解析: 递推(动态规划):

详见代码:

#include <bits/std
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值