内存限制: 256 Mb时间限制: 1000 ms
题目描述
给定 n 个整数 a1,a2,⋯,an,它们组成了一个圆环。请在这个圆环上,找出一段连续的区间,使得这段区间的数字之和达到最大。空集和圆环本身都可以算圆环的子区间。由于是圆环,an 和 a1 也被视作是相邻的。
输入格式
第一行:单个整数 n。
第二行:n 个整数表示 a1 到 an。
输出格式
单个整数:表示最大的子区间之和。
数据范围
- 对于30%的数据,1≤n≤100;
- 对于60%的数据,1≤n≤1000;
- 对于100%的数据,1≤n≤100000;
- −1000≤ai≤1000。
样例数据
输入:
5
3 1 -4 1 5
输出:
10
说明:
1+5+3+1是最大的
解析:
对于圆环,我们可以把它分为两类 ,第一类是不跨过an a1的,第二类是跨过an a1的,对于第一类,我们很好处理,对于第二类,我们可以把它分解为两部分,一部分从a1开始,最远到ai结束,另一部分从an开始,最远到ai+1结束。
详见代码:
#include <bits/stdc++.h>
using namespace std;
int a[100005];
long long z[100005];//z[i]表示从a1开始到ai结束最大的区间和
long long ni[100005];//ni[i]表示从an开始到ai结束最大的区间和
int main() {
long long ans = 0;
long long m = 0;
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1; i <= n; i++) {//不跨过a1 an情况的最大值
m += a[i];
ans = max(ans, m);
if (m < 0) {
m = 0;
}
}
m = 0;
for (int i = 1; i <= n; i++) {//计算从a1开始到ai结束最大的区间和
m += a[i];
z[i] = max(m, z[i - 1]);
}
m = 0;
for (int i = n; i >= 1; i--) {//计算从an开始到ai结束最大的区间和
m += a[i];
ni[i] = max(m, ni[i - 1]);
}
for (int i = 1; i < n; i++) {//枚举分割点
ans = max(ans, z[i] + ni[i + 1]);//计算最大值
}
cout << ans << endl;
return 0;
}