上海计算机学会2020年9月月赛C++乙组T1 最大圆弧

该文描述了一个编程问题,给定一个环绕排列的整数数组,目标是找到最大的连续子区间的和。解决方案包括维护两个数组,分别记录从数组起始和结束点开始的最大子区间和,然后遍历数组找到分割点以考虑跨越首尾的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内存限制: 256 Mb时间限制: 1000 ms

题目描述

给定 n 个整数 a1​,a2​,⋯,an​,它们组成了一个圆环。请在这个圆环上,找出一段连续的区间,使得这段区间的数字之和达到最大。空集和圆环本身都可以算圆环的子区间。由于是圆环,an​ 和 a1​ 也被视作是相邻的。

输入格式

第一行:单个整数 n。
第二行:n 个整数表示 a1​ 到 an​。

输出格式

单个整数:表示最大的子区间之和。

数据范围
  • 对于30%的数据,1≤n≤100;
  • 对于60%的数据,1≤n≤1000;
  • 对于100%的数据,1≤n≤100000;
  • −1000≤ai​≤1000。
样例数据

 输入:
5
3 1 -4 1 5 
输出:
10
说明:
1+5+3+1是最大的

解析:

对于圆环,我们可以把它分为两类 ,第一类是不跨过an a1的,第二类是跨过an a1的,对于第一类,我们很好处理,对于第二类,我们可以把它分解为两部分,一部分从a1开始,最远到ai结束,另一部分从an开始,最远到ai+1结束。

详见代码:

#include <bits/stdc++.h>
using namespace std;
int a[100005];
long long z[100005];//z[i]表示从a1开始到ai结束最大的区间和
long long ni[100005];//ni[i]表示从an开始到ai结束最大的区间和
int main() {
    long long ans = 0;
    long long m = 0;
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
    }
    for (int i = 1; i <= n; i++) {//不跨过a1 an情况的最大值
        m += a[i];
        ans = max(ans, m);
        if (m < 0) {
            m = 0;
        }
    }
    m = 0;
    for (int i = 1; i <= n; i++) {//计算从a1开始到ai结束最大的区间和
        m += a[i];
        z[i] = max(m, z[i - 1]);
    }
           m = 0;
    for (int i = n; i >= 1; i--) {//计算从an开始到ai结束最大的区间和
        m += a[i];
        ni[i] = max(m, ni[i - 1]);
    }
    for (int i = 1; i < n; i++) {//枚举分割点
        ans = max(ans, z[i] + ni[i + 1]);//计算最大值
    }
    cout << ans << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值