keras 使用卷积神经网络进行序列处理

本文详细探讨了如何利用Keras库构建卷积神经网络(ConvNet)来处理序列数据,通过实例代码展示了具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍使用卷积神经网络进行序列处理。

下面是示例代码:


# coding: utf-8

# In[2]:


'''
使用convnet进行序列处理:
在Keras中,通过`Conv1D`层使用1D convnet,它具有与`Conv2D`非常相似的接口。
它需要具有shape`(样本,时间,特征)的3D张量输入,并且还返回类似形状的3D张量。
卷积窗口是时间轴上的1D窗口,输入张量中的轴1。
构建一个简单的2层1D convnet,并将其应用于IMDB情感分类任务。
这是获取和预处理数据的代码
'''
from  keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 10000  # 作为特征的单词数量
maxlen = 500  # 之后的文本全部截断

print('Loading data ...')


# In[5]:


(x_train, y_train), (x_test, y_test) = imdb .load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')


# In[8]:


print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cchangcs

谢谢你的支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值