【深度学习】2-模型在测试集的准确率大于训练集

博主在模型训练中遇到模型测试准确率高于训练集的反常情况,通过深入分析发现是欠拟合和小批量统计滞后性所致。通过增加训练周期和调整统计训练集准确率的方式,解决了问题。本文揭示了训练策略对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚩 前言

🚩 活动地址:CSDN21天学习挑战赛
🚀 博主主页:清风莫追

保持输入,保持输出!(引用我某朋友的一句话)



1. 问题描述

在模型训练过程中突然发现,模型的准确率在测试集上居然比在训练集上还要高。但是我们知道,我们训练模型的方式就是在训练集上最小化损失。因此,模型在训练集上有着更好的表现,才应该是正常的现象。
那么,是什么导致了在测试集上准确率更高的现象呢?

模型训练结果:

在这里插入图片描述

2. 解决问题

2. 1. 欠拟合

后来我咨询了某大佬,她说:“多训练几次看看,前几次一直在欠拟合”,我顿时感觉,好建议

增加训练周期数:
在这里插入图片描述

果然!随着训练周期的增加,模型准确率慢慢地回归了正轨。在训练集上的准确率又超过了测试集上的。

2. 2. 小批量统计的滞后性

但我依然有所疑惑,为什么在训练周期较少的欠拟合状态下,会出现模型在测试集上准确率更高的情况呢?它们之间有什么关系?
有一篇博文给出的部分解释,我觉得很合理,比较符合我遇到的情况:

训练集的准确率是每个batch之后产生的,而验证集的准确率一般是一个epoch后产生的,验证时的模型是训练一个个batch之后的,有一个滞后性,可以说就是用训练得差不多的模型用来验证,当然准确率要高一点。

也就是说,问题的出现和个人具体统计训练集准确率的方式有关。如果是在每个训练周期结束后再统计训练集上的模型准确率,而不是在每个小批量结束就统计,那就不会出现这样的问题。
当然,光说是不行的,得实践。我检查了之前的模型代码,发现我训练集上的准确率确实是每个小批量结束后就统计的。那不妨试试训练集的准确率也在每个周期结束后再进行统计

每个训练周期后再统计训练集上的准确率( train acc 2):
在这里插入图片描述

容易发现,即使在欠拟合的状态下,如果训练集和测试集准确率的统计方式相同,模型还是会在训练集上的准确率更高。


参考文献:
神经网络与深度学习—验证集(测试集)准确率高于训练集准确率的原因


小结

遇到问题,看一看别人的想法,可能会让自己瞬间茅塞顿开。一个人钻牛角尖不可取。

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风莫追

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值