开源模型应用落地-qwen1.5-7b-chat-LoRA微调(二)

本文介绍了如何使用LoRA微调开源模型Qwen1.5,以适应特定领域需求。内容涵盖LoRA的概念、Qwen1.5的特性,以及从构建环境、模型下载、数据准备到训练服务部署的详细步骤。通过微调,可以在不牺牲模型质量的同时减少训练参数,提升模型在聊天对话等任务中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、前言

        预训练模型提供的是通用能力,对于某些特定领域的问题可能不够擅长,通过微调可以让模型更适应这些特定领域的需求,让它更擅长解决具体的问题。

        本篇是开源模型应用落地-qwen-7b-chat-LoRA微调(一)进阶篇,学习通义千问最新1.5系列模型的微调方式。


二、术语介绍

2.1. LoRA微调

        LoRA (Low-Rank Adaptation) 用于微调大型语言模型 (LLM)。  是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。

2.2. Qwen1.5

    Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous relea

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值