开源模型应用落地-Meta-Llama-3.1-8B-Instruct与vllm-单机多卡-RTX 4090双卡(十四)

一、前言

    在应对业务访问量级提升的过程中,我们通过从单机单卡部署升级到单机多卡部署的方式,成功实现了VLLM模型的性能提升。在此过程中,我们遇到了一些问题和挑战,现在我将深入剖析这些经验教训,希望能够帮助大家快速上手部署可投入生产运行的环境。

    本次采用入门级的4090双卡 24GB显存的配置,部署Meta-Llama-3.1-8B-Instruct 模型。

    Meta-Llama-3.1-8B-Instruct 模型具有众多显著的好处。它能够凭借出色的语言理解和生成能力,精准地理解用户输入的各种复杂指令,并生成逻辑清晰、内容丰富且连贯的高质量回复。其在多语言处理方面表现出色,可轻松应对不同语言的输入和输出,拓宽了应用场景和用户群体。为用户带来更加优质和个性化的服务体验。


二、术语

2.1. vLLM

    vLLM是一个开源的大模型推理加速框架,通过PagedAttention高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高14-24倍的吞吐量。

2.2. Meta-Llama-3.1-8B-Instruct

    新的 Llama 3.1 模型包括 8B、70B、405B

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值