### 使用 LlamaFactory 对 Qwen2.5-7B 模型进行微调
#### 准备工作
为了成功完成模型的微调,需先安装必要的依赖库并准备训练数据集。LlamaFactory 提供了一套工具链来简化这一过程[^1]。
```bash
pip install git+https://github.com/hiyouga/LLaMA-Lite.git
```
上述命令用于安装 LLaMA-Family 的扩展包,其中包括支持 LoRA 方法的相关组件。
#### 数据预处理
在开始微调之前,需要准备好标注好的对话数据集,并将其转换为适合输入模型的形式。通常情况下,这些数据会被转化为 JSON 或 CSV 文件格式:
```json
[
{"instruction": "你好", "input": "", "output": "您好!有什么可以帮您的吗?"},
{"instruction": "北京天气怎么样?", "input": "", "output": "目前无法提供实时天气信息,请查询相关网站获取最新情况。"}
]
```
此部分的数据结构定义了每条样本中的 `instruction`(指令)、可选的上下文信息字段 `input` 和目标回复内容 `output`。
#### 微调配置文件设置
创建一个 YAML 配置文件以指定超参数和其他选项。下面是一个简单的例子:
```yaml
model_name_or_path: qwen/Qwen2.5-7B-Instruct
data_file: ./dataset.jsonl
output_dir: ./results/qwen_lora_tuned
num_train_epochs: 3
per_device_train_batch_size: 4
gradient_accumulation_steps: 8
learning_rate: 2e-5
logging_steps: 10
save_strategy: steps
save_steps: 200
evaluation_strategy: no
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
max_grad_norm: 1.0
fp16: true
push_to_hub: false
hub_model_id: null
hub_token: null
use_peft: true
peft_config:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
target_modules: ["q_proj", "k_proj", "v_proj", "o_proj"]
```
该配置指定了基础模型路径、训练数据位置以及保存结果的目标目录等重要参数。特别注意的是,在这里启用了 PEFT 技术并通过 `peft_config` 字段设置了具体的 LoRA 参数。
#### 启动微调脚本
最后一步就是运行实际的微调程序。可以通过如下 Python 脚本来执行整个流程:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
import torch
from peft import get_peft_config, PeftType, LoraConfig, TaskType, get_peft_model
def main():
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen2.5-7B-Instruct")
model = AutoModelForCausalLM.from_pretrained(
"qwen/Qwen2.5-7B-Instruct",
load_in_8bit=True,
device_map='auto'
)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=8,
lora_alpha=16,
lora_dropout=0.05,
target_modules=["query_key_value"],
)
model = get_peft_model(model, peft_config)
training_args = TrainingArguments(output_dir="./results")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=None, # Replace with your dataset loading logic.
data_collator=None,
tokenizer=tokenizer,
)
if __name__ == "__main__":
main()
```
以上代码片段展示了如何加载原始大语言模型,并通过 Hugging Face 的 PEFT 库为其添加适配器层以便于后续高效更新权重。
#### 总结
通过对 Qwen2.5-7B 进行基于 LoRA 的微调操作,可以在保持原有性能的同时显著减少计算资源消耗和时间成本。这种方法非常适合快速迭代开发场景下的定制化需求满足。