开源模型应用落地-qwen2.5-7b-instruct-LoRA微调-LLaMA-Factory-单机单卡-V100(十八)

一、前言

    本篇文章将使用LLaMA-Factory去高效微调(命令和界面方式)QWen2.5系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。

    QWen2系列模型微调: 开源模型应用落地-qwen2-7b-instruct-LoRA微调-LLaMA-Factory-单机单卡-V100(八)icon-default.png?t=O83Ahttps://charles.blog.csdn.net/article/details/141391066


二、术语介绍

2.1. LoRA微调

  &nb

### 使用 LlamaFactoryQwen2.5-7B 模型进行微调 #### 准备工作 为了成功完成模型微调,需先安装必要的依赖库并准备训练数据集。LlamaFactory 提供了一套工具链来简化这一过程[^1]。 ```bash pip install git+https://github.com/hiyouga/LLaMA-Lite.git ``` 上述命令用于安装 LLaMA-Family 的扩展包,其中包括支持 LoRA 方法的相关组件。 #### 数据预处理 在开始微调之前,需要准备好标注好的对话数据集,并将其转换为适合输入模型的形式。通常情况下,这些数据会被转化为 JSON 或 CSV 文件格式: ```json [ {"instruction": "你好", "input": "", "output": "您好!有什么可以帮您的吗?"}, {"instruction": "北京天气怎么样?", "input": "", "output": "目前无法提供实时天气信息,请查询相关网站获取最新情况。"} ] ``` 此部分的数据结构定义了每条样本中的 `instruction`(指令)、可选的上下文信息字段 `input` 和目标回复内容 `output`。 #### 微调配置文件设置 创建一个 YAML 配置文件以指定超参数和其他选项。下面是一个简单的例子: ```yaml model_name_or_path: qwen/Qwen2.5-7B-Instruct data_file: ./dataset.jsonl output_dir: ./results/qwen_lora_tuned num_train_epochs: 3 per_device_train_batch_size: 4 gradient_accumulation_steps: 8 learning_rate: 2e-5 logging_steps: 10 save_strategy: steps save_steps: 200 evaluation_strategy: no weight_decay: 0.01 adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 max_grad_norm: 1.0 fp16: true push_to_hub: false hub_model_id: null hub_token: null use_peft: true peft_config: lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj"] ``` 该配置指定了基础模型路径、训练数据位置以及保存结果的目标目录等重要参数。特别注意的是,在这里启用了 PEFT 技术并通过 `peft_config` 字段设置了具体的 LoRA 参数。 #### 启动微调脚本 最后一步就是运行实际的微调程序。可以通过如下 Python 脚本来执行整个流程: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer import torch from peft import get_peft_config, PeftType, LoraConfig, TaskType, get_peft_model def main(): tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen2.5-7B-Instruct") model = AutoModelForCausalLM.from_pretrained( "qwen/Qwen2.5-7B-Instruct", load_in_8bit=True, device_map='auto' ) peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.05, target_modules=["query_key_value"], ) model = get_peft_model(model, peft_config) training_args = TrainingArguments(output_dir="./results") trainer = Trainer( model=model, args=training_args, train_dataset=None, # Replace with your dataset loading logic. data_collator=None, tokenizer=tokenizer, ) if __name__ == "__main__": main() ``` 以上代码片段展示了如何加载原始大语言模型,并通过 Hugging Face 的 PEFT 库为其添加适配器层以便于后续高效更新权重。 #### 总结 通过对 Qwen2.5-7B 进行基于 LoRA微调操作,可以在保持原有性能的同时显著减少计算资源消耗和时间成本。这种方法非常适合快速迭代开发场景下的定制化需求满足。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值