一、前言
在 AI 系统日益复杂的今天,传统开发模式面临两大痛点:一是Agent行为如 "黑箱" 难以追溯,二是用户需求变化导致的Agent执行路径修正成本高昂。LangGraph 框架通过状态快照技术与断点机制,为开发者提供了前所未有的调试与控制能力。本文将深入解析如何通过get_state_history与update_state
两大核心方法,实现对历史对话状态的精准回溯与修改。
前置知识:
开源模型应用落地-LangGraph101-探索 LangGraph人机交互-添加断点(一)