开源模型应用落地-LangGraph101-探索 LangGraph人机交互-更新历史Graph状态(三)

一、前言

    在 AI 系统日益复杂的今天,传统开发模式面临两大痛点:一是Agent行为如 "黑箱" 难以追溯,二是用户需求变化导致的Agent执行路径修正成本高昂。LangGraph 框架通过状态快照技术与断点机制,为开发者提供了前所未有的调试控制能力。本文将深入解析如何通过get_state_historyupdate_state两大核心方法,实现对历史对话状态的精准回溯与修改。

    前置知识:

    开源模型应用落地-LangGraph101-探索 LangGraph人机交互-添加断点(一)

    

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值