《自动驾驶中的深度学习模型量化、部署、加速实战》专栏概述 | 实战教程,开放源码

该博客主要探讨了自动驾驶领域的模型部署,通过TensorRT实现ResNet50、ResNet IbN、Arcface等模型的量化和加速,利用OpenCV+CUDA部署YOLO V4、Mask R-CNN等目标检测和语义分割模型,并涉及Vision Transformer的TensorRT转化,同时包含了CUDA编程的基础示例和NCNN的关键点检测应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里主要是针对AI算法落地的模型部署,其中有基于TensorRT的部署、基于OpenCV+CUDA的部署以及基于NCNN的部署,项目包括简单的demo案例、目标检测、语义分割、实例分割、车道线检测以及Transformer等。大家可以参考以下的链接进行学习和指正。

#模型部署#

1. ResNet50基于TensorRT FP16生成Engnie文件的C++工程

ResNet50基于TensorRT FP16生成Engnie文件的C++工程,ubuntu运行,可自行修改为win下使用,推理代码可自行根据自己的实际情况书写,需要的小伙伴自取哈。图片为执行步骤。
在这里插入图片描述

点击这里查看付费文章。


2. ResNet_ibn基于TensorRT FP32生成Engnie文件的C++工程

https://t.zsxq.com/036qjMBUB

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charmve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值