DFS之连通性模型

本文详细介绍了深度优先搜索(DFS)和广度优先搜索(BFS)在解决AcWing平台上的1112.迷宫和1113.红与黑问题中的应用。通过实例分析和代码实现,展示了如何利用DFS和BFS进行路径查找和连通性判断,并讨论了两种算法的时间复杂度。虽然当前未给出具体的时间复杂度证明,但文章强调了后续会补充相关理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

复习acwing算法提高课的内容,本篇为讲解算法:DFS之连通性模型,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、DFS

深度优先搜索,基础的模板我们已经讲过,见:DFS,在这里不做过多赘述,本文主要针对一些dfs的类型题目做相应的讲解


二、例题,代码

AcWing 1112. 迷宫

本题链接:AcWing 1112. 迷宫
本博客提供本题截图:

在这里插入图片描述
在这里插入图片描述

本题分析

dfs的板子题,注意题目中的坑:A,B不一定是两个不同的点,起点和终点也可能是'#'

AC代码

DFS
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 110;

int k, n, la, ha, lb, hb;
char g[N][N];
bool st[N][N];

bool dfs(int x, int y)
{
    if (g[x][y] == '#') return false;
    if (x == hb && y == lb) return true;
    
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    st[x][y] = true;
    
    for (int i = 0; i < 4; i ++ )
    {
        int a = x + dx[i], b = y + dy[i];
        if (a < 0 || a >= n || b < 0 || b >= n) continue;
        if (st[a][b]) continue;
        if (dfs(a, b)) return true;
    }
    
    return false;
}

int main()
{
    scanf("%d", &k);
    while (k -- )
    {
        scanf("%d", &n);
        for (int i = 0; i < n; i ++ ) scanf("%s", g[i]);
        scanf("%d%d%d%d", &ha, &la, &hb, &lb);
        
        memset(st, false, sizeof st);
        if (dfs(ha, la)) puts("YES");
        else puts("NO");
    }
    
    return 0;
}
BFS
#include <cstdio>
#include <cstring>
#include <map>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 110, M = N * N;

PII q[M];
char g[N][N];
bool st[N][N];
int k, n, ha, la, hb, lb;

bool bfs()
{
    if (g[ha][la] == '#') return false;
    if (la == lb && ha == hb) return true;
    
    int dx[4] = {0, -1, 0, 1}, dy[4] = {-1, 0, 1, 0};
    
    int hh = 0, tt = 0;
    q[0] = {ha, la};
    st[ha][la] = true;
    
    while (hh <= tt)
    {
        auto t = q[hh ++];
        
        for (int i = 0; i < 4; i ++ )
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= n) continue;
            if (st[a][b] || g[a][b] == '#') continue;
            if (a == hb && b == lb) return true;
            
            q[++ tt] = {a, b};
            st[a][b] = true;
        }
    }
    
    return false;
}

int main()
{
    scanf("%d", &k);
    
    while (k -- )
    {
        scanf("%d", &n);
        for (int i = 0; i <n; i ++ ) scanf("%s", g[i]);
        scanf("%d%d%d%d", &ha, &la, &hb, &lb);
        
        memset(st, false, sizeof st);
        
        if (bfs()) puts("YES");
        else puts("NO");
    }
    
    return 0;
}

AcWing 1113. 红与黑

本题链接:AcWing 1113. 红与黑
本博客提供本题截图:

在这里插入图片描述
在这里插入图片描述

本题分析

其实就是Flood Fill算法的dfs写法

AC代码

DFS
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 25;

int n, m;
char g[N][N];
bool st[N][N];

int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

int dfs(int x, int y)
{
    int cnt = 1;
    st[x][y] = true;
    
    for (int i = 0; i < 4; i ++ )
    {
        int a = x + dx[i], b = y + dy[i];
        if (a < 0 || a >= n || b < 0 || b >= m) continue;
        if (st[a][b]) continue;
        if (g[a][b] == '#') continue;
        
        cnt += dfs(a, b);
    }
    
    return cnt;
}

int main()
{
    while (cin >> m >> n, n || m)
    {
        memset(st, false, sizeof st);
        
        for (int i = 0; i < n; i ++ )
            cin >> g[i];
        
        int x, y;
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < m; j ++ )
                if (g[i][j] == '@')
                {
                    x = i;
                    y = j;
                    break;
                }
                
        cout << dfs(x, y) << endl;
    }
    
    return 0;
}
BFS

就是Flood Fill算法


三、时间复杂度

关于DFS之连通性模型的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值