【从零开始学习SLAM】两张图像如何拼接成点云

本文介绍了如何从两张图像构建点云,涉及SLAM的基础概念,如相机内外参数、畸变校正、特征匹配、ICP算法及旋转和平移矩阵的计算。通过解决OpenCV中的编译错误,展示了将像素坐标转换为世界坐标的步骤,最终形成连续的点云图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

貌似用两个摄像机,采集两张图像,在知道相机内外参数的情况下 也可以计算出3D空间坐标点云。(双目测距原理)
单目测距原理两帧图像

根据三角形相似原理可以求出参数焦距 f的值,接下来就可以计算新采集图片中实物的距离z了。
描述了点 P 和它的像之间的空间关系。
像素坐标系像素平面与成像平面之间,相差了一个缩放和一个原点的平移。
相机内参数矩阵(Camera Intrinsics)K,就包含了fx、fy焦距和光心cx、xy的坐标,
通过这个矩阵就可以计算出像素坐标系和空间坐标系之间的关系。

在这里插入图片描述

相机的位姿 R, t 又称为相机的外参数(Camera Extrinsics), 它描述了 P 的世界坐标到像素坐标的投影关系。
其中,相比于不变的内参,外参会随着相机运动发生改变,同时也是 SLAM中待估计的目标,代表着机器人的轨迹。
最后,小结一下单目相机的成像过程:
首先,世界坐标系下有一个固定的点 P ,世界坐标为 P w ;
由于相机在运动,它的运动由 R, t 矩阵描述。P 的相机坐标为:P̃ c = RP w + t。
最后P 的坐标经过内参后对应到它的像素坐标:P uv = KP c 。

为了获得好的成像效果,我们在相机的前方加了透镜。由透镜形状引起的畸变称之为径向畸变,径向畸变的两种类型:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值