貌似用两个摄像机,采集两张图像,在知道相机内外参数的情况下 也可以计算出3D空间坐标点云。(双目测距原理)
单目测距原理两帧图像
根据三角形相似原理可以求出参数焦距 f
的值,接下来就可以计算新采集图片中实物的距离z
了。
描述了点 P 和它的像之间的空间关系。
像素坐标系像素平面与成像平面之间,相差了一个缩放和一个原点的平移。
相机内参数矩阵(Camera Intrinsics)K,就包含了fx、fy
焦距和光心cx、xy
的坐标,
通过这个矩阵就可以计算出像素坐标系和空间坐标系之间的关系。
相机的位姿 R, t 又称为相机的外参数(Camera Extrinsics), 它描述了 P 的世界坐标到像素坐标的投影关系。
其中,相比于不变的内参,外参会随着相机运动发生改变,同时也是 SLAM中待估计的目标,代表着机器人的轨迹。
最后,小结一下单目相机的成像过程:
首先,世界坐标系下有一个固定的点 P ,世界坐标为 P w ;
由于相机在运动,它的运动由 R, t 矩阵描述。P 的相机坐标为:P̃ c = RP w + t。
最后P 的坐标经过内参后对应到它的像素坐标:P uv = KP c 。
为了获得好的成像效果,我们在相机的前方加了透镜。由透镜形状引起的畸变称之为径向畸变,径向畸变的两种类型: