Python Pandas 安装和设置

本文介绍了如何在Python环境中安装和设置Pandas,包括使用pip或Anaconda安装,以及Pandas的配置选项。同时,探讨了Pandas与NumPy的关系,解释了两者在数据结构和功能上的区别,并强调了它们之间的互操作性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、安装 Pandas

1)确保已安装Python

Pandas 需要 Python 环境。可以通过在终端或命令提示符中运行 python --version 来检查是否已安装 Python。

2)安装 Pandas

使用 Python 的包管理器 pip 进行安装:

pip install pandas

Anaconda 可以使用 Conda 进行安装:

conda install pandas

3)更新Pandas

pip install --upgrade pandas

2、设置 Pandas

设置 Pandas 可以帮助自定义 Pandas 的显示和配置,以提高清晰度和一致性。

1)常用选项

选项

描述

display.max_rows

控制DataFrame或Series在控制台输出时显示的最大行数。

display.max_columns

设置DataFrame输出时显示的最大列数。

display.width

设置命令行输出的宽度,以字符为单位。

display.max_colwidth

设置单个列的最大宽度。

display.precision

设置浮点数显示的小数位数。

display.expand_frame_repr

在打印DataFrame信息时,是否显示扩展信息。

display.notebook_repr_html

控制当DataFrame以HTML形式显示时的一些特性,

如是否显示索引。

display.float_format

控制是否显示浮点数小数点后不重要的0。

display.memory_usage

在DataFrame的信息输出中显示内存占用。

2)完整选项

选项

描述

compute.use_bottleneck

如果安装了bottleneck库,则使用它来加速计算,

默认值为True,有效值:

False, True [默认: True] [当前: True]

compute.use_numba

如果安装了numba,

则使用numba引擎选项进行选定操作,

默认值为False,有效值:False, 

True [默认: False] [当前: False]

compute.use_numexpr

如果安装了numexpr库,则使用它来加速计算,

默认值为True,有效值:False, 

True [默认: True] [当前: True]

display.chop_threshold

如果设置为浮点值,

则所有小于给定阈值的浮点值在repr中显示为0,

默认值:None [当前: None]

display.colheader_justify

控制列标题的对齐方式,

由DataFrameFormatter使用,

默认值:right [当前: right]

display.date_dayfirst

当为True时,打印和解析日期时首先显示日,

例如20/01/2005,默认值:False [当前: False]

display.date_yearfirst

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值