tf tensor与numpy转换,embedding_lookup、embedding_lookup_sparse使用,feature_column使用

本文介绍了在TensorFlow 2.x中如何进行Tensor与Numpy数组的转换,详细讲解了`embedding_lookup`和`embedding_lookup_sparse`的使用,特别是对于多值离散情况的应用,并探讨了在特征工程中`feature_column`的运用,包括`crossed_column`、`indicator_column`和`embedding_column`的细节,强调了它们在DNN输入中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、 tensor与numpy转换

注意:tf 2以后不用session ,tensor转numpy直接 mm.numpy()就行
np.asarray([1,3,6,2]) #列表或元祖转array

# numpy to tensor
import numpy as np
data_numpy = np.ones(5)
mm = tf.convert_to_tensor(data_numpy)
with tf.Session() as sess:
    print(mm.eval())
# tensor to numpy
with tf.Session() as sess:
    print(kk.eval())

2、embedding_lookup、embedding_lookup_sparse使用

参考:https://www.jianshu.com/p/e8986d0ff4ff

import tensorflow as tf
# tf.enable_eager_execution() # 关键
# tf.enable_eager_execution(
#     config=None,
#     device_policy=None,
#     execution_mode=None
# )


embedding = tf.constant(
    [
        [0.21,0.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值