Sea_AttentionBlock:Yolov8轻量高效注意力模块引领ICLR2023潮流
引言
目标检测和语义分割一直是计算机视觉领域的热点问题。在最新的Yolov8版本中,涨点技巧Sea_AttentionBlock成为关注焦点。此外,复旦大学与腾讯联合提出的轻量级语义分割算法SeaFormer也在ICLR2023引起轰动。本文将深入研究Sea_AttentionBlock的设计原理,探讨SeaFormer的轻量级语义分割算法,通过案例和代码示例详细解读这两项技术的卓越之处。
关键词提炼
Yolov8的涨点技巧关键词主要包括“Sea_AttentionBlock”、ICLR2023、“SeaFormer”以及“轻量级语义分割算法”。Sea_AttentionBlock代表了一种轻量高效的注意力模块,而SeaFormer则是一项由复旦大学与腾讯联合提出的轻量级语义分割算法。ICLR2023是这两项技术的亮点发布平台。
Sea_AttentionBlock:轻量高效注意力模块
设计原理
Sea_AttentionBlock的设计灵感来自于对注意力机制的进一步优化。该模块通过引入轻量级的注意力机制,提升了Yolov8在目标检测任务中的性能。以下是Sea_AttentionBlock的简单实现示例: