Sea_AttentionBlock:Yolov8轻量高效注意力模块引领ICLR2023潮流

本文深入研究了Yolov8中轻量高效的Sea_AttentionBlock注意力模块,以及复旦大学与腾讯联合提出的SeaFormer语义分割算法。Sea_AttentionBlock提升目标检测性能,实现4.0%的mAP提升;SeaFormer在语义分割上取得6.3%的IoU提升,两者在ICLR2023上引起关注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sea_AttentionBlock:Yolov8轻量高效注意力模块引领ICLR2023潮流

引言

目标检测和语义分割一直是计算机视觉领域的热点问题。在最新的Yolov8版本中,涨点技巧Sea_AttentionBlock成为关注焦点。此外,复旦大学与腾讯联合提出的轻量级语义分割算法SeaFormer也在ICLR2023引起轰动。本文将深入研究Sea_AttentionBlock的设计原理,探讨SeaFormer的轻量级语义分割算法,通过案例和代码示例详细解读这两项技术的卓越之处。

关键词提炼

Yolov8的涨点技巧关键词主要包括“Sea_AttentionBlock”、ICLR2023、“SeaFormer”以及“轻量级语义分割算法”。Sea_AttentionBlock代表了一种轻量高效的注意力模块,而SeaFormer则是一项由复旦大学与腾讯联合提出的轻量级语义分割算法。ICLR2023是这两项技术的亮点发布平台。

Sea_AttentionBlock:轻量高效注意力模块

设计原理

Sea_AttentionBlock的设计灵感来自于对注意力机制的进一步优化。该模块通过引入轻量级的注意力机制,提升了Yolov8在目标检测任务中的性能。以下是Sea_AttentionBlock的简单实现示例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哒佬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值