高等数学:泰勒公式

博客汇总了多个常见函数的泰勒展开式,包括1/(1 - x)、1/(1 + x)、e^x、sinx、cosx等,还给出了部分函数展开式的修正及推导说明,如arccosx可由arcsinx的泰勒公式推出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:第三条exe^xex的展开式,在111+12x2+\frac{1}{2}x^2+21x2之间添上一个+x+x+x

  1. 11−x=∑n=0∞xn=1+x+x2+x3+ο(x3),x∈(−1,1).\begin{aligned}\frac{1}{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+x^3+\omicron(x^3),x\in(-1,1).\end{aligned}1x1=n=0xn=1+x+x2+x3+ο(x3),x(1,1).

  2. 11+x=∑n=0∞(−1)nxn=1−x+x2−x3+ο(x3),x∈(−1,1).\begin{aligned}\frac{1}{1+x}=\sum_{n=0}^\infty (-1)^nx^n=1-x+x^2-x^3+\omicron(x^3),x\in(-1,1).\end{aligned}1+x1=n=0(1)nxn=1x+x2x3+ο(x3),x(1,1).

  3. ex=∑n=0∞xnn!=1+12x2+16x3+ο(x3),x∈(−∞,+∞).\begin{aligned}e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+\frac{1}{2}x^2+\frac{1}{6}x^3+\omicron(x^3),x\in(-\infty,+\infty).\end{aligned}ex=n=0n!xn=1+21x2+61x3+ο(x3),x(,+).

  4. sin⁡x=∑n=0∞(−1)nx2n+1(2n+1)!=x−x36+ο(x3),x∈(−∞,+∞).\begin{aligned}\sin x=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}=x-\frac{x^3}{6}+\omicron(x^3),x\in(-\infty,+\infty).\end{aligned}sinx=n=0(1)n(2n+1)!x2n+1=x6x3+ο(x3),x(,+).

  5. cos⁡x=∑n=0∞(−1)nx2n(2n)!=1−x22+x424+ο(x4),x∈(−∞,+∞).\begin{aligned}\cos x=\sum_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2}+\frac{x^4}{24}+\omicron(x^4),x\in(-\infty,+\infty).\end{aligned}cosx=n=0(1)n(2n)!x2n=12x2+24x4+ο(x4),x(,+).

  6. tan⁡x=∑n=0∞B2n(−4)n(1−4n)(2n)!x2n−1=x+x33+ο(x3),x∈(−π2,π2).\begin{aligned}\tan x=\sum_{n=0}^\infty\frac{B_{2n}(-4)^n(1-4^n)}{(2n)!}x^{2n-1}=x+\frac{x^3}{3}+\omicron(x^3),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned}tanx=n=0(2n)!B2n(4)n(14n)x2n1=x+3x3+ο(x3),x(2π,2π).

其中 B2nB_{2n}B2nBernoulli\mathrm{Bernoulli}Bernoulli数,定义为 Bn=lim⁡x→0dndxn[xex−1].\begin{aligned}B_n=\lim_{x\rightarrow0}\frac{d^n}{dx^n}[\frac{x}{e^x-1}].\end{aligned}Bn=x0limdxndn[ex1x].

  1. arcsin⁡x=∑n=0∞(2n)!4n(n!)2×x2n+12n+1=x+x36+ο(x3),x∈[−1,1]\begin{aligned}\arcsin x=\sum_{n=0}^\infty \frac{(2n)!}{4^n(n!)^2}\times\frac{x^{2n+1}}{2n+1}=x+\frac{x^3}{6}+\omicron(x^3),x\in[-1,1]\end{aligned}arcsinx=n=04n(n!)2(2n)!×2n+1x2n+1=x+6x3+ο(x3),x[1,1]

  2. arccos⁡x=π2−arcsin⁡x=π2−∑n=0∞(−1)nx2n+12n+1=π2−x−x36+ο(x3),x∈[−1,1].\begin{aligned}\arccos x=\frac{\pi}{2}-\arcsin x=\frac{\pi}{2}-\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}=\frac{\pi}{2}-x-\frac{x^3}{6}+\omicron(x^3),x\in[-1,1].\end{aligned}arccosx=2πarcsinx=2πn=02n+1(1)nx2n+1=2πx6x3+ο(x3),x[1,1].

注:一般的TaylorTaylorTaylor公式表里面没有标注 arccos⁡x\arccos xarccosx的原因是, arccos⁡x+arcsin⁡x=π2\arccos x+\arcsin x=\frac{\pi}{2}arccosx+arcsinx=2π,也就是说,根据 arcsin⁡x\arcsin xarcsinxTaylorTaylorTaylor公式,就可以直接推出 $\arccos x 的的Taylor$了。

  1. arctan⁡x=∑n=0∞(−1)nx2n+12n+1=x−x33+ο(x3),x∈[−1,1].\begin{aligned}\arctan x=\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}=x-\frac{x^3}{3}+\omicron(x^3),x\in[-1,1].\end{aligned}arctanx=n=02n+1(1)nx2n+1=x3x3+ο(x3),x[1,1].

  2. arccot x=π2−arctan⁡x=π2−∑n=0∞(−1)nx2n+12n+1=π2−x+x33+ο(x3),x∈[−1,1].\begin{aligned}\mathrm{arccot} \,x=\frac{\pi}{2}-\arctan x=\frac{\pi}{2}-\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}=\frac{\pi}{2}-x+\frac{x^3}{3}+\omicron(x^3),x\in[-1,1].\end{aligned}arccotx=2πarctanx=2πn=02n+1(1)nx2n+1=2πx+3x3+ο(x3),x[1,1].

这里也是一样,可以直接用 arctan⁡x\arctan xarctanxTaylorTaylorTaylor公式推出来,就不作过多解释了。

  1. arcsec x=arccos⁡(1x)=π2−arcsin⁡(1x)=π2−∑n=0∞(2n)!4n(n!)2×(1x)2n+12n+1=π2−1x−16x3+ο(x3),{x∈R∣x∉(−1,1)}.\begin{aligned}\mathrm{arcsec}\,x=\arccos(\frac{1}{x})=\frac{\pi}{2}-\arcsin(\frac{1}{x})\end{aligned} \begin{aligned}=\frac{\pi}{2}-\sum_{n=0}^\infty\frac{(2n)!}{4^n(n!)^2}\times\frac{(\frac{1}{x})^{2n+1}}{2n+1}=\frac{\pi}{2}-\frac{1}{x}-\frac{1}{6x^3}+\omicron(x^3),\{x\in\mathbb{R}|x\notin(-1,1)\}.\end{aligned}arcsecx=arccos(x1)=2πarcsin(x1)=2πn=04n(n!)2(2n)!×2n+1(x1)2n+1=2πx16x31+ο(x3),{xRx/(1,1)}.

至于怎么推导出来的,问就是desmos里图像完全一样。

  1. arccsc x=π2−arcsec x=π2−(π2−arcsin⁡(1x))=arcsin⁡(1x)=∑n=0∞(2n)!4n(n!)2×(1x)2n+12n+1=1x+16x3+ο(1x3),{x∈R∣x∉(−1,1)}.\begin{aligned}\mathbb{arccsc}\,x=\frac{\pi}{2}-\mathbb{arcsec}\,x=\frac{\pi}{2}-(\frac{\pi}{2}-\arcsin(\frac{1}{x}))=\arcsin(\frac{1}{x})\end{aligned}\begin{aligned}=\sum_{n=0}^\infty \frac{(2n)!}{4^n(n!)^2}\times\frac{(\frac{1}{x})^{2n+1}}{2n+1}=\frac{1}{x}+\frac{1}{6x^3}+\omicron(\frac{1}{x^3}),\{x\in\mathbb R|x\notin(-1,1)\}.\end{aligned}arccscx=2πarcsecx=2π(2πarcsin(x1))=arcsin(x1)=n=04n(n!)2(2n)!×2n+1(x1)2n+1=x1+6x31+ο(x31),{xRx/(1,1)}.

  2. ln⁡(1+x)=∑n=0∞(−1)nxn+1n+1=x−12x2+13x3+ο(x3),x∈(−1,1].\begin{aligned}\ln(1+x)=\sum_{n=0}^\infty(-1)^n\frac{x^{n+1}}{n+1}=x-\frac{1}{2}x^2+\frac{1}{3}x^3+\omicron(x^3),x\in(-1,1].\end{aligned}ln(1+x)=n=0(1)nn+1xn+1=x21x2+31x3+ο(x3),x(1,1].

  3. (1+x)m=1+∑n=1∞m(m−1)⋯(m−n+1)n!xn,x∈(−1,1).\begin{aligned}(1+x)^m=1+\sum_{n=1}^\infty\frac{m(m-1)\cdots(m-n+1)}{n!}x^n,x\in(-1,1).\end{aligned}(1+x)m=1+n=1n!m(m1)(mn+1)xn,x(1,1).

  4. cot⁡x=∑n=0∞(−1)n22nB2n(2n)!x2n−1=1x−13x−145x3+ο(x3),x∈(0,π).\begin{aligned}\cot x=\sum_{n=0}^\infty\frac{(-1)^n2^{2n}B_{2n}}{(2n)!}x^{2n-1}=\frac{1}{x}-\frac{1}{3}x-\frac{1}{45}x^3+\omicron(x^3),x\in(0,\pi).\end{aligned}cotx=n=0(2n)!(1)n22nB2nx2n1=x131x451x3+ο(x3),x(0,π).

  5. sec⁡x=∑n=0∞(−1)nE2nx2n(2n)!=1+12x2+524x4+ο(x4),x∈(−π2,π2).\begin{aligned}\sec x=\sum_{n=0}^\infty\frac{(-1)^nE_{2n}x^{2n}}{(2n)!}=1+\frac{1}{2}x^2+\frac{5}{24}x^4+\omicron(x^4),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned}secx=n=0(2n)!(1)nE2nx2n=1+21x2+245x4+ο(x4),x(2π,2π).

其中 E2nE_{2n}E2nEulerEulerEuler数,定义为 En={1,n=0.−∑k=0n−1(−1)kC2n2kEk,n≥1.E_n= \begin{cases} 1,n=0.\\[2ex] \begin{aligned}-\sum_{k=0}^{n-1}\end{aligned}(-1)^kC_{2n}^{2k}E_k,n\ge1.\\[2ex] \end{cases}En=1,n=0.k=0n1(1)kC2n2kEk,n1.

  1. csc⁡x=∑n=0∞(−1)n+12(2n−1−1)B2n(2n)!x2n−1=1x+16x+7360x3+ο(x3),x∈(0,π).\begin{aligned}\csc x=\sum_{n=0}^\infty\frac{(-1)^{n+1}2(2^{n-1}-1)B_{2n}}{(2n)!}x^{2n-1}=\frac{1}{x}+\frac{1}{6}x+\frac{7}{360}x^3+\omicron(x^3),x\in(0,\pi).\end{aligned}cscx=n=0(2n)!(1)n+12(2n11)B2nx2n1=x1+61x+3607x3+ο(x3),x(0,π).

  2. sinh⁡x=∑n=0∞x2n+1(2n+1)!=x+13!x3+ο(x3),x∈(−∞,+∞).\begin{aligned}\sinh x=\sum_{n=0}^\infty\frac{x^{2n+1}}{(2n+1)!}=x+\frac{1}{3!}x^3+\omicron(x^3),x\in(-\infty,+\infty).\end{aligned}sinhx=n=0(2n+1)!x2n+1=x+3!1x3+ο(x3),x(,+).

  3. cosh⁡x=∑n=0∞x2n(2n)!=1+12!x2+14!x4+ο(x4),x∈(−∞,+∞).\begin{aligned}\cosh x=\sum_{n=0}^\infty\frac{x^{2n}}{(2n)!}=1+\frac{1}{2!}x^2+\frac{1}{4!}x^4+\omicron(x^4),x\in(-\infty,+\infty).\end{aligned}coshx=n=0(2n)!x2n=1+2!1x2+4!1x4+ο(x4),x(,+).

  4. tanh⁡x=∑n=1∞22n(22n−1)B2nx2n−1(2n)!=x−13x3+ο(x3),x∈(−π2,π2).\begin{aligned}\tanh x=\sum_{n=1}^\infty\frac{2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}=x-\frac{1}{3}x^3+\omicron(x^3),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned}tanhx=n=1(2n)!22n(22n1)B2nx2n1=x31x3+ο(x3),x(2π,2π).

  5. coth⁡x=∑n=0∞(−1)n−122nBn(2n!)x2n−1=1x+13x−145x3+ο(x3),x∈(−π,π).\begin{aligned}\coth x=\sum_{n=0}^\infty\frac{(-1)^{n-1}2^{2n}B_{n}}{(2n!)}x^{2n-1}=\frac{1}{x}+\frac{1}{3}x-\frac{1}{45}x^3+\omicron(x^3),x\in(-\pi,\pi).\end{aligned}cothx=n=0(2n!)(1)n122nBnx2n1=x1+31x451x3+ο(x3),x(π,π).

  6. sech x=∑n=0∞(−1)nE2n(2n)!x2n=1−12!x2+54!x4+ο(x4),x∈(−π2,π2).\begin{aligned}\mathrm{sech}\,x=\sum_{n=0}^\infty\frac{(-1)^nE_{2n}}{(2n)!}x^{2n}=1-\frac{1}{2!}x^2+\frac{5}{4!}x^4+\omicron(x^4),x\in(-\frac{\pi}{2},\frac{\pi}{2}).\end{aligned}sechx=n=0(2n)!(1)nE2nx2n=12!1x2+4!5x4+ο(x4),x(2π,2π).

  7. csch x=∑n=0∞2(−1)n(22n−1−1)Bn(2n)!x2n−1=1x−16x+7360x3+ο(x3),x∈(−π,π).\begin{aligned}\mathrm{csch}\,x=\sum_{n=0}^\infty\frac{2(-1)^n(2^{2n-1}-1)B_n}{(2n)!}x^{2n-1}=\frac{1}{x}-\frac{1}{6}x+\frac{7}{360}x^3+\omicron(x^3),x\in(-\pi,\pi).\end{aligned}cschx=n=0(2n)!2(1)n(22n11)Bnx2n1=x161x+3607x3+ο(x3),x(π,π).

  8. arcsinh x=∑n=0∞((−1)n(2n)!22n(n!)2)x2n+12n+1=x−16x3+ο(x3),x∈(−1,1).\begin{aligned}\mathrm{arcsinh}\,x=\sum_{n=0}^\infty\begin{pmatrix}\frac{(-1)^n(2n)!}{2^{2n}(n!)^2}\end{pmatrix}\frac{x^{2n+1}}{2n+1}=x-\frac{1}{6}x^3+\omicron(x^3),x\in(-1,1).\end{aligned}arcsinhx=n=0(22n(n!)2(1)n(2n)!)2n+1x2n+1=x61x3+ο(x3),x(1,1).

  9. arccosh x=ln⁡(2x)−∑n=1∞((−1)n(2n)!22n(n!)2)x−2n2n=ln⁡(2x)−14x−2−332x−4+ο(x−4),{x∈R∣x∉[−1,1]}.\begin{aligned}\mathrm{arccosh}\,x=\ln(2x)-\sum_{n=1}^\infty\begin{pmatrix}\frac{(-1)^n(2n)!}{2^{2n}(n!)^2}\end{pmatrix}\frac{x^{-2n}}{2n}=\ln(2x)-\frac{1}{4}x^{-2}-\frac{3}{32}x^{-4}+\omicron(x^{-4}),\{x\in \mathbb{R}|x\notin[-1,1]\}.\end{aligned}arccoshx=ln(2x)n=1(22n(n!)2(1)n(2n)!)2nx2n=ln(2x)41x2323x4+ο(x4),{xRx/[1,1]}.

  10. arctanh x=∑n=0∞x2n+12n+1=x+13x3+ο(x3),x∈(−1,1).\begin{aligned}\mathrm{arctanh}\,x=\sum_{n=0}^\infty\frac{x^{2n+1}}{2n+1}=x+\frac{1}{3}x^3+\omicron(x^3),x\in(-1,1).\end{aligned}arctanhx=n=02n+1x2n+1=x+31x3+ο(x3),x(1,1).

arccoth x\mathrm{arccoth}\,xarccothxarcsech x\mathrm{arcsech}\,xarcsechxarccsch x\mathrm{arccsch}\,xarccschx的公式找不到了。

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Writers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值