随机试验
若一个实验满足:
- 相同条件下可重复进行
- 所有可能结果在实验前是确定的
- 某次试验前不确定具体发生的结果
样本空间:随机实验E的所有可能的基本结果所组成的集合,称为随机事件E的样本空间,记为 Ω \Omega Ω ,其中任意一个元素称为样本点
随机事件: Ω \Omega Ω的子集称为随机事件
积事件:随机事件A与B同时发生的事件 和事件:事件A或事件B发生的事件 差事件:事件A发生而B不发生
补事件:随机事件A不发生的事件
若事件 A ⊂ B A\subset B A⊂B且 B ⊂ A B\subset A B⊂A ,记为 A = B A=B A=B
互斥(不相容)与对立事件:
事件A与B不能同时发生,称为互斥事件,若不能同时发生,且至少有一个发生,称为对立事件
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
A
B
ˉ
=
A
ˉ
+
B
ˉ
A
ˉ
B
ˉ
=
A
+
B
ˉ
A\cap(B\cup C)=(A\cap B)\cup(A\cap C) A\cup(B\cap C)=(A\cup B)\cap(A\cup C) \\ \bar{AB}=\bar{A}+\bar{B} \bar{A}\bar{B}=\bar{A+B}
A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)ABˉ=Aˉ+BˉAˉBˉ=A+Bˉ
概率的公理化定义:(1)非负性 (2)归一性 (3)可列可加性
概率基本公式:
减法公式: P ( A − B ) = P ( A B ˉ ) = P ( A ) − P ( A B ) P(A-B)=P(A\bar{B})=P(A)-P(AB) P(A−B)=P(ABˉ)=P(A)−P(AB) 证明: P ( A ) = P ( A − B ) + P ( A B ) = P ( A B ˉ ) + P ( A B ) A = A P(A)=P(A-B)+P(AB) =P(A\bar{B})+P(AB) A=A P(A)=P(A−B)+P(AB)=P(ABˉ)+P(AB)A=A与B相交+与B不相交
加法公式: P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)−P(AB) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC)
条件概率公式: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(B∣A)=P(A)P(AB)
乘法公式: P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)={P(A)}P(B|A) P(AB)=P(A)P(B∣A) P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n ) P(A_{1}A_{2}...A_{n})=P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}A_{2})...P(A_{n}|A_{1}A_{2}...A_{n}) P(A1A2...An)=P(A1)P(A2∣A1)P(A3∣A1A2)...P(An∣A1A2...An)
事件独立
两个事件 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
三个事件 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P ( A B C ) = P ( A ) P ( B ) P ( C ) P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C)
事件独立的性质
- 若事件A与B相互独立,则事件A与 B ˉ , A ˉ \bar{B} , \bar{A} Bˉ,Aˉ与 B , B ˉ 与 A ˉ B, \bar{B} 与 \bar{A} B,Bˉ与Aˉ也相互独立
独立是说事件A发生跟事件B发生没关系。 而互斥表示事件A发生的话,事件B就不会发生。 这就是“有关系”。 独立意味着AB事件同时发生的概率可以计算: P ( A B ) = P ( A ) P ( B ) P (AB)=P (A)P (B) P(AB)=P(A)P(B),而互斥意味着AB时间同时发生的概率为 0 : P ( A B ) = 0 0:P (AB)=0 0:P(AB)=0。
若 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0,若A,B独立则不互斥,互斥则不独立
三大概型
(一)古典概型
若随机实验E满足样本空间中只有有限个样本点 · 样本空间中每个样本点发生的概率都是等可能的
设随机实验E所包含的样本点总数为n个,随机事件A所含的样本点个数为k,则事件A的概率为 P ( A ) = k n P(A)=\frac{k}{n} P(A)=nk
(二)几何概型
设随机试验E对应的样本空间为可度量的有界区域,若所有样本点等可能出现,则称随机试验E对应的概率类型为几何概型 P ( A ) = A 的度量 Ω 的总度量 P(A)=\frac{A的度量}{\Omega的总度量} P(A)=Ω的总度量A的度量
(三)伯努利概型
每次实验只有两种可能的结果 A 和 A ˉ \bar{A} Aˉ ,每次实验发生A 和 A ˉ \bar{A} Aˉ的概率不变,这样的实验重复进行n次,称为n重伯努律实验
设 P ( A ) = p , P ( A k ) = C n k p k ( 1 − p ) n − k P(A)=p , P(A_{k})=C_{n}^{k}p_{k}(1-p)^{n-k} P(A)=p,P(Ak)=Cnkpk(1−p)n−k