高等数学:概率论(一)

随机试验

若一个实验满足:

  1. 相同条件下可重复进行
  2. 所有可能结果在实验前是确定的
  3. 某次试验前不确定具体发生的结果

样本空间:随机实验E的所有可能的基本结果所组成的集合,称为随机事件E的样本空间,记为 Ω \Omega Ω ,其中任意一个元素称为样本点

随机事件: Ω \Omega Ω的子集称为随机事件

积事件:随机事件A与B同时发生的事件 和事件:事件A或事件B发生的事件 差事件:事件A发生而B不发生

补事件:随机事件A不发生的事件

若事件 A ⊂ B A\subset B AB B ⊂ A B\subset A BA ,记为 A = B A=B A=B

互斥(不相容)与对立事件:

事件A与B不能同时发生,称为互斥事件,若不能同时发生,且至少有一个发生,称为对立事件
A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A B ˉ = A ˉ + B ˉ A ˉ B ˉ = A + B ˉ A\cap(B\cup C)=(A\cap B)\cup(A\cap C) A\cup(B\cap C)=(A\cup B)\cap(A\cup C) \\ \bar{AB}=\bar{A}+\bar{B} \bar{A}\bar{B}=\bar{A+B} A(BC)=(AB)(AC)A(BC)=(AB)(AC)ABˉ=Aˉ+BˉAˉBˉ=A+Bˉ
概率的公理化定义:(1)非负性 (2)归一性 (3)可列可加性

概率基本公式:

减法公式: P ( A − B ) = P ( A B ˉ ) = P ( A ) − P ( A B ) P(A-B)=P(A\bar{B})=P(A)-P(AB) P(AB)=P(ABˉ)=P(A)P(AB) 证明: P ( A ) = P ( A − B ) + P ( A B ) = P ( A B ˉ ) + P ( A B ) A = A P(A)=P(A-B)+P(AB) =P(A\bar{B})+P(AB) A=A P(A)=P(AB)+P(AB)=P(ABˉ)+P(AB)A=A与B相交+与B不相交

加法公式: P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

条件概率公式: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

乘法公式: P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)={P(A)}P(B|A) P(AB)=P(A)P(BA) P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n ) P(A_{1}A_{2}...A_{n})=P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}A_{2})...P(A_{n}|A_{1}A_{2}...A_{n}) P(A1A2...An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1A2...An)

事件独立

两个事件 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

三个事件 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P ( A B C ) = P ( A ) P ( B ) P ( C ) P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C) P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C)

事件独立的性质

  1. 若事件A与B相互独立,则事件A与 B ˉ , A ˉ \bar{B} , \bar{A} Bˉ,Aˉ B , B ˉ 与 A ˉ B, \bar{B} 与 \bar{A} B,BˉAˉ也相互独立

独立是说事件A发生跟事件B发生没关系。 而互斥表示事件A发生的话,事件B就不会发生。 这就是“有关系”。 独立意味着AB事件同时发生的概率可以计算: P ( A B ) = P ( A ) P ( B ) P (AB)=P (A)P (B) P(AB)=P(A)P(B),而互斥意味着AB时间同时发生的概率为 0 : P ( A B ) = 0 0:P (AB)=0 0:P(AB)=0

P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0,若A,B独立则不互斥,互斥则不独立

三大概型

(一)古典概型

若随机实验E满足样本空间中只有有限个样本点 · 样本空间中每个样本点发生的概率都是等可能的

设随机实验E所包含的样本点总数为n个,随机事件A所含的样本点个数为k,则事件A的概率为 P ( A ) = k n P(A)=\frac{k}{n} P(A)=nk

(二)几何概型

设随机试验E对应的样本空间为可度量的有界区域,若所有样本点等可能出现,则称随机试验E对应的概率类型为几何概型 P ( A ) = A 的度量 Ω 的总度量 P(A)=\frac{A的度量}{\Omega的总度量} P(A)=Ω的总度量A的度量

(三)伯努利概型

每次实验只有两种可能的结果 A 和 A ˉ \bar{A} Aˉ ,每次实验发生A 和 A ˉ \bar{A} Aˉ的概率不变,这样的实验重复进行n次,称为n重伯努律实验

P ( A ) = p , P ( A k ) = C n k p k ( 1 − p ) n − k P(A)=p , P(A_{k})=C_{n}^{k}p_{k}(1-p)^{n-k} P(A)=pP(Ak)=Cnkpk(1p)nk

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Writers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值